A Simplex Word is one that is either
1. a monosyllable (e.g. stump) or
2. a trochaic disyllable
 ending with one of the following unstressed suffixes:

 a. /-əl/ as in **opal** (468 occurrences)
 b. /-ər/ as in **doctor** (407 “)
 c. /-i/ as in **lily** (271 “)
 d. /-ən/ as in **beacon** (173 “)
 e. /-ət/ as in **lancet** (133 “)
 f. /-əs/ as in **jealous** (89 “)
 g. /-ə/ as in **window** (83 “)
 h. /-ək/ as in **chronic** (56 “)
 i. /-əm/ as in **system** (46 “)
 j. /-əʃ/ as in **punish** (28 “)
 k. /-əd/ as in **method** (27 “)
 l. /-ə/ as in **tuna** (24 “)
 m. /-əŋ/ as in **cunning** (10 “)
 n. /-əb/ as in **cherub** (3 “)
 o. /-əns/ as in **science** (2 “)
 p. /-li/ as in **ugly** (2 “)
 q. /-əz/ as in **Mrs.** (1 occurrence)

(NO: No distinction is made in the data between unstressed suffixes containing [i] (an allophone of /ə/) and those containing /u/.
Since there is no contrast between them, both are coded as /ə/.

All data (and statistics) from the Lawler-Rhodes Simplex Word Database
http://www.umich.edu/~jlawler/monosyl.zip

Proper nouns are excluded (e.g, *London /lɔndən/),
as are productive derivational (e.g, *push-er, /pʊʃər/),
and inflectional suffixes. (e.g, *push-ing /pʊʃɪŋ/)

Assonance: Initial consonant cluster of simplex word (ST- in stump)

Rime: Stressed initial nucleus and coda of simplex word (-UMP in stump)

Assonance Class: Set of all words in database with a particular assonance

Rime Class: Set of all words in database with a particular rime

Coherence: Percentage of words in a rime or assonance class that form a semantically coherent subset

Orthogonal: Two or more coherent subsets in a class are orthogonal if there is no intrinsic semantic connection between them; this usually results in little or no overlap between subsets. (Ex: -ump subsets) Such classes are best represented as Venn diagrams.

Non-Orthogonal: Two or more coherent subsets in a class are non-orthogonal if there is some intrinsic semantic connection between them; this usually results in large multiple overlaps between subsets. (Ex: kr- subsets) Such classes are best represented as feature matrices.