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Local Mean Payoff Supervisory Control for
Discrete Event Systems

Yiding Ji , Member, IEEE, Xiang Yin , Member, IEEE, and Stéphane Lafortune , Fellow, IEEE

Abstract—This article investigates quantitative supervi-
sory control with local mean payoff objectives on discrete
event systems modeled as weighted automata. Weight
flows are generated as new events occur, which are re-
quired to satisfy some quantitative conditions. We focus
on mean weights (payoffs) over a finite number of events,
which serve as a measure for the stability or robustness
of weight flows. The range of events to evaluate the mean
payoff is termed a window, which slides as new events
occur. Qualitative requirements such as safety and liveness
are also necessary along with quantitative requirements.
Supervisory control is employed to manipulate the opera-
tion of the system so that the requirements are satisfied.
We consider two different scenarios based on whether the
window size is fixed or not. Correspondingly, we formulate
two supervisory control problems, both of which are solved
sequentially by first tackling the qualitative issues and then
the quantitative ones. The automaton model is then trans-
formed to a two-player game between the supervisor and
the environment, where safety and liveness are enforced.
Based on the intermediate results, several quantitative ob-
jectives are defined to formulate two games, which corre-
spond to the two proposed supervisory control problems.
Finally, we synthesize provably correct supervisors by solv-
ing the games and completely resolve both problems.

Index Terms—Algorithmic game theory, automata, dis-
crete event systems, mean payoff, supervisory control.

I. INTRODUCTION

IN THE context of discrete event systems (DES), supervisory
control is a central topic. The plant under control is usually

modeled as a finite discrete structure, and a specification is given
as the desired behavior of the plant. The supervisor restricts the
behavior of the plant by enabling or disabling some events so
that the specification is achieved [6], [44].
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Ever since supervisory control theory was initiated, it has been
thoroughly investigated in various models of DES, including
automata [41], [49], Petri nets [11], [26], [27], and other struc-
tures [12], [45]. As an important extension, supervisory control
under partial observation has attracted considerable attention;
for recent references, see, e.g., [1], [2], [5], [9], [16], [38], [39],
and [47]. Particularly, a uniform supervisory control approach
was proposed in [48] to enforce a series of properties on par-
tially observed DES. Other mechanisms of supervisory control
have also been developed, such as decentralized control [22],
[46], distributed control [21], supervisor reduction [24], control
of timed DES [36], learning-based supervisor synthesis [10],
[50], compositional control [31], control under attacks [25],
[30], [43], and so on. In parallel with qualitative analysis,
quantitative supervisory control has also been studied, where
some quantitative measures are introduced to evaluate the su-
pervisor’s performance. A classic topic is optimal supervisory
control/stabilization; see, e.g., [14], [15], [29], [32], and [33] for
works covering different perspectives.

In many engineering applications, the system generates or
consumes certain resources during its operation. It is critical
to ensure that the long-run average rate or total amount of
resource generation/consumption remains reasonable. Super-
visory control may be employed to enforce such objectives.
Specifically, optimal makespan or throughput supervisors were
discussed in [40] and [42], which considered timed automata
and limit average time of strings. More recently, some works
investigated optimal supervisory control under a game theoretic
framework [19], [34], [35]; however, they all focus on asymp-
totic properties while ignoring transient properties.

Consider supervisory control in power management systems
for hybrid electric vehicles (HEVs); see, e.g., [28]. The su-
pervisory controller tunes the torque so that either a positive
or negative torque is demanded from the powertrain according
to the driving mode. Power is either generated by the electric
machine or absorbed from the driveline to charge the battery.
Specifically, the rate of power supply should remain high enough
for the stable operation of the vehicle.

Another example is data transmission through a communica-
tion network modeled as a DES. Each packet transmission can be
modeled as an event while the event weights could represent the
number of bits contained in each packet. The information flow
is generated when packets are transmitted through the network.
At each stage, the sender transmits certain packets according
to the receiver’s capacity. After those packets are successfully
received, the sender moves on to the next stage to start another
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round of transmission. We may imagine that there is a sliding
“window” over the network, where the window size indicates the
number of available time slots to send packets. The window size
may vary dynamically at each stage depending on the real-time
network status. Unfortunately, the network is not trustworthy and
some packets may be lost due to malfunction or disturbances.
Therefore, the integrity of data would be seriously affected if a
high volume of data is transmitted in a small number of windows
and the packets in those windows are lost. In that sense, it makes
sense to bound the amount of bits transmitted per window to
improve the robustness of network flows against disturbances.

Motivated by the above situations, we explore local mean
payoff supervisory control on weighted discrete event systems
in this article. Each event is associated with a weight which
represents a certain resource of interest. With the occurrence
of events, weight flows are generated, also under the control of
the supervisor. Specifically, we consider two supervisory control
scenarios where the supervisor regulates the local mean payoff
to reduce fluctuation beyond prespecified bounds within a finite
number of events. For both scenarios, qualitative requirements
like safety and liveness are also imposed, i.e., no undesired
state is reached and the system never terminates. The horizon
to evaluate the mean payoff is called as the window which is
sliding with new events occurring.

In the first scenario, the supervisor ensures that local mean
payoff over a finite number of transitions lies above certain
threshold, which is termed a desirable window. In the second
scenario we consider a variant called N-step desirable window
which requires that the weight flows satisfy the bounds within
a window of fixed size N . This naturally comes from practical
situations where stable or robust flows should be achieved in
uniformly bounded steps or when the surveillance of flow status
is taken in every fixed time unit.

Both problems are solved in a sequence. As a first step, we
transform the system model from a weighted automaton to a
two-player game between the supervisor and the environment.
Then we introduce the generic definition of weighted bipartite
transition system (WBTS), which is the game graph. Then a
special WBTS is constructed, where we define some relevant
concepts so as to tackle the safety and liveness issues.

Though the two problems look similar at first glance, they
are solved in totally different manners to resolve quantitative
issues. Two different games are formulated, corresponding to
the two problems. In the first case, results from total payoff
games [4] are leveraged to compute the supervisor’s winning
region and an algorithm is proposed to synthesize supervisors.
In the second case, window payoff functions are defined and
another game is formulated. Then we derive the final solution
based on properly unfolding the game graph. Herein, we provide
systematic methods to synthesize winning strategies for both
games and show that if the supervisor has strategies to win the
game, then there exist solutions to the corresponding local mean
payoff supervisory control problem. Note that the solutions to
the two problems are incomparable; thus, each solution is not
applicable to the other problem.

Under the framework of local mean payoff supervisory con-
trol in this article, a supervisor issues the current command based

on the mean payoff within a limited lookahead, generating a
path. Then it issues a new sequence of decisions “within the
window” upon the occurrence of a new event and a new path
is generated. Limited lookahead supervisory control has been
studied in DES [8], where the supervisor is only capable of
observing limited future events. This is similar to our framework
in the sense of evaluating the supervisor’s decisions within a
limited horizon. However, only qualitative specifications like
safety and nonblockingness are considered in existing works
of limited lookahead supervisory control; so our framework is
significantly different from theirs.

The problem formulations and solution procedures in this
article are also inspired by the literature in algorithmic game
theory in computer science [3], especially quantitative games
like mean payoff games [3] and mean payoff games with window
objectives [7]. Some works leverage results from algorithmic
game theory to investigate problems in DES, such as [17],
[19], [34], and [35]. However, they either consider different
supervisory control objectives like limit mean payoff or total
payoff [19], [34], [35] or investigate a totally different problem
like opacity enforcement [17]. To the best of our knowledge,
this article is the first to consider local mean payoff supervisory
control problems under full observation in DES. A more recent
paper [20] adopted a similar setting while investigating local
mean payoff supervisory control under partial observation.

The following sections are organized as follows. Section II de-
scribes the system model. Section III formulates two problems:
supervisory control under desirable windows and supervisory
control under N-step desirable windows. In Section IV, we
transform the proposed problems into two-player games and
introduce the WBTS based on which those problems are partially
solved and the qualitative requirements are enforced. Section V
completely solves the first proposed problem by introducing and
solving a quantitative game. In Section VI, we formulate and
analyze another game to completely solve the second proposed
problem. Finally, Section VII concludes the article.

A preliminary version of this article with partial results ap-
pears in [18], which only considers the second problem dis-
cussed in this article. The improvements of the current work
are twofold: A new problem of local mean payoff supervisory
control is discussed under “unfixed” desirable windows; some
necessary proofs and further analysis concerning the second
problem are provided as well, which are missing in [18].

II. SYSTEM MODEL

We consider a quantitative discrete event system modeled by
a weighted finite-state automaton

G = (X,E, f, x0, ω)

where X is the finite state space, E is the finite set of events,
f : X × E → X is the partial transition function, x0 ∈ X is the
initial state, and ω : E → Z is the weight function that assigns
an integer vector to each event. The weight reflects change of
the quantitative resource associated with each event, which may
be positive or nonpositive. The domain of f can be extended
to X × E∗ in the standard manner [6] and we still denote the
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extended function by f . The language generated byG isL(G) =
{s ∈ E∗ : f(x0, s)!} where ! means “is defined.” The function
ω is additive and its domain can be extended to E∗ by letting
ω(ε) = 0, ω(se) = ω(s) + ω(e) for all s ∈ E∗ and e ∈ E. In
this article, we denote by W the maximum absolute value of
event weights in G, i.e., W = max

e∈E
|ω(e)|.

In G, if f(x1, e) = x2 for some x1, x2 ∈ X , and e ∈ E, then
we write x1

e−→ x2 for simplicity. A run is a finite or infinite
sequence of alternating states and events in the form: r = x1

e1−→
x2

e2−→ · · · en−1−−−→ xn. A run is initial if it starts from the initial
state of G. We denote by Run(G) and Runinf(G) the set of runs
and infinite runs inG, respectively. For index 1 ≤ i ≤ n, we call
xi

ei−→ · · · en−→ xn+1 a suffix of r and x1
e1−→ · · · ei−→ xi+1 a prefix

of r. In addition, for indexes j and m such that 1 ≤ j < m ≤ n,
we call xj

ej−→ xj+1
ej+1−−−→ · · · em−−→ xm+1 a fragment of r, which

is a run by itself. Furthermore, we let r(j,m) stand for the run
fragment starting from xj and ending in xm+1.

A run r = x1
e1−→ x2

e2−→ · · · en−1−−−→ xn is a cycle if x1 = xn,
and r is a simple cycle if ∀i, j ∈ {1, 2, . . . , n− 1}, i �= j ⇒
xi �= xj . If r is a cycle, the corresponding string e1e2 · · · en−1

forms a loop, and the loop is simple if r is simple. A run is
acyclic if none of its fragments is a cycle; otherwise, it is cyclic.

We discuss safety in a state-based manner and let Xus ⊂ X
be the set of unsafe states in G. The readers may refer to [13] for
how to convert a language-based specification to a state-based
one on an automaton. Marked states usually represent states
of particular interest and concern language nonblockingness,
which is not the focus of this article. Therefore, state marking
is not included in our system model. Instead, we consider a
weak version of liveness: G is live if its language L(G) is live,
i.e., ∀s ∈ L(G), ∃u ∈ E, s.t. su ∈ L(G). That is, a transition is
always defined out of any state in G; thus, every finite run may
be extended to an infinite one. This condition is not restrictive as
it may be relaxed by adding observable self-loops at states where
no active events are defined. We will omit the word “weak” in
the following context when there is no confusion.

The system G is controlled by a supervisor which dynami-
cally enables and disables events so that some specification is
achieved [6]. Formally, a supervisor is a function S : L(G) →
2E and we denote by S, the set of supervisors. The event set E is
partitioned as E = Ec ∪ Euc, where Ec is the set of controllable
events and Euc is the set of uncontrollable events. A control
decision γ ∈ 2E is admissible ifEuc ⊆ γ, i.e., no uncontrollable
event is disabled. Denote by Γ the set of all admissible control
decisions. In this article, all events are observable and only
admissible control decisions are considered; so controllability is
preserved. We use S/G to represent the controlled system under
S and, accordingly, denote by L(S/G) the language generated
in S/G and Run(S/G) the set of runs in S/G, respectively. As
marked states are not involved in G, we do not consider the
standard nonblockingness of supervisors [6]. In the remainder
of the article, a supervisor is called safe and (weakly) live if its
supervised system is both safe and live.

Given a run r = x1
e1−→ x2

e2−→ · · · en−→ xn+1 in G, its (to-
tal weight/payoff is

∑n
i=1 ω(ei) and its mean weight/payoff is

1

n

n∑
i=1

ω(ei). As illustrated in Section I, the mean weight within

a sliding “window” provides a measure of stability or robustness
of weight flows, while the window size reflects the length of the
horizon within which we evaluate those properties. In contrast to
the limit mean payoff which evaluates the “global” asymptotic
performance of the system, we focus on the local mean payoff in
this article. Note that the local mean payoff is an approximation
of the limit mean payoff since the former will essentially become
the latter when the size of the windows approaches infinity.

In this article, we require the local mean weight to be above
a given threshold and consider two scenarios: one is over a
bounded number of events and the other is over a fixed number of
events. Correspondingly, we have the following two definitions
to evaluate the local mean payoff.

Definition 1 (Desirable Window): Given G and mean payoff
bound v ∈ Z, a finite run r = x1

e1−→ x2
e2−→ · · · em−−→ xm+1 in G

forms a desirable window if ∃� ≤ m such that
1

�

�∑
i=1

ω(ei) ≥ v.

A desirable window is formed if the mean payoff turns to be no
less than a given bound within a finite number of events. On the
other hand, we say r in Definition 1 forms an undesirable window

if ∀1 ≤ � ≤ m,
1

�

�∑
i=1

ω(ei) < v. If we interpret an undesirable

window as deviation from the preferred reference or disturbance
of the normal performance, then it should be compensated or
mitigated by supervisory control.

Definition 2 (N-Step Desirable Window): Given system G,
fixed window size N ∈ N+, and mean payoff bound v ∈ Z, a
finite run r = x1

e1−→ x2
e2−→ · · · eN−−→ xN+1 inG forms an N-step

desirable window if ∃� ≤ N such that
1

�

�∑
i=1

ω(ei) ≥ v.

As is seen, an N-step desirable window is a special desirable
window since the length of the desirable window is fixed. In the
remainder of the article, we assume N ≥ 2 to avoid the case
where a one-step desirable window can be trivially determined
by checking each individual event weight inG. Both Definition 1
and Definition 2 are defined for finite runs. Then we let the
windows slide with new event occurrences and evaluate the local
mean weight for infinite runs.

Definition 3 (Desirable-Window Infinite Run): Given system
G and mean payoff bound v ∈ Z, a run r = x1

e1−→ x2
e2−→ · · · ∈

Runinf (G) is a desirable-window infinite run if∃i ≥ 1 such that
∀j ≥ i, ∃mj ≥ 0, we have that run fragment r(j, j +mj) forms
a desirable window.

Definition 4 (N-Step Desirable-Window Infinite Run): Given
system G, maximum window size N ∈ N+ and mean payoff
threshold v ∈ Z, a run r = x1

e1−→ x2
e2−→ · · · ∈ Runinf (G) is

an N-step desirable-window infinite run if ∃i ≥ 1 such that ∀j ≥
i, we have that r(j, j +N) forms an N-step desirable window.

Both Definitions 3 and 4 characterize local mean payoff
objectives defined over a finite number of events, which are
in contrast to the limit (global) mean payoff objective defined
over an infinite number of events in [19]. Furthermore, it may
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Fig. 1. Sliding windows and the local mean payoffs.

be tolerable to allow violations of the mean payoff bound for
a finite number of times in some applications. Therefore, it
seems more practical to enforce the local mean payoff objective
after the system has been operating for a while. That is why we
require that desirable windows (N-step desirable windows) be
perpetually achieved from certain position xi, not necessarily
the initial state x0 of G, in Definition 3 (Definition 4). In other
words, both Definitions 3 and 4 are independent of finite run
prefixes. When the system is live, desirable or N-step desirable
windows may appear infinitely often. Again we assume that
N ≥ 2 in Definition 4.

Note that the inequalities in both Definitions 1 and 2 are the

same as
1

�

i=�∑
i=1

(ω(ei)− v) ≥ 0, i.e., we may subtractv from each

event weight and equivalently evaluate whether the mean payoff
is above 0. In the following discussion, we just assume v = 0
without loss of generality. Mean payoff of runs with sliding
windows of length three is illustrated in Fig. 1. As is seen, the
local mean payoff is evaluated every three events and the window
slides to the next position after event e occurs.

III. PROBLEM FORMULATION

When safety is violated or the local mean payoffs of some
runs lie outside the prescribed bound, supervisory control is
employed to mitigate those issues. In this section, we formulate
two local mean payoff supervisory control problems: supervi-
sory control under desirable windows and supervisory control
under N -step desirable windows. In both problems, supervisors
enforce qualitative and quantitative specifications.

Problem 1 (Supervisory Control Under Desirable Windows):
Given system G with unsafe state set Xus and mean payoff
bound v ∈ Z, design a supervisor S ∈ S such that: 1) S/G is
both safe and live; 2) for all r ∈ Runinf (S/G), r is a desirable-
window infinite run.

In addition to safety and liveness, Problem 1 requires that
every infinite run in the supervised system is a desirable-window
infinite run. Then we fix the size of the desirable windows and
formulate Problem 2 as follows.

Problem 2 (Supervisory Control Under N -Step Desirable
Windows): Given system G with the unsafe state set Xus and
fixed window size N ∈ N+, design a supervisor S ∈ S such
that: 1) S/G is both safe and live; 2) for all r ∈ Rinf (S/G), r
is an N -step desirable-window infinite run.

Fig. 2. Weighted automaton G in Example 1.

Remark 1: Given an infinite run r as in Definition 3, suppose
xj with j > 1 is the first position where a nonnegative total
payoff (desirable window) is achieved, i.e.,

∑j
i=1 ω(ei) ≥ 0 and∑j′

i=1 ω(ei) < 0 for all j′ < j. By some derivation, we know

that
∑j

i=j′ ω(ei) ≥ 0 >
∑j′−1

i=1 ω(ei) holds for any j ′ < j; oth-
erwise, it contradicts with xj being the first place where a
desirable window is achieved. So any run fragment r(j,′ j) also
forms a desirable window. This fact is called inductive property
and we will apply it in the following sections.

Though the two problems only differ in whether the length
of desirable windows is fixed, they will be addressed in com-
pletely different methods in terms of satisfying the quantitative
properties. In what follows, we first solve Problem 1 and then
proceed to Problem 2. For each problem, we tackle the quali-
tative requirements before the quantitative ones. We close the
discussion of this section with the following example.

Example 1: Consider the weighted automaton G in Fig. 2
, with the only unsafe state x8. The set of controllable events
is Ec = {a, b, c, d, e, f} and the set of uncontrollable events
is Euc = {u1, u2, u3, u4, u5, u6}. The weight of each event is
drawn along with the event in the figure.

Obviously, the run x1
a−→ x2

d−→ x1
a−→ x2

d−→ · · · is not a
desirable-window infinite run since none of its fragment is
a desirable window. If we fix the window size as N = 3,
then the run x1

u2−→ x6
e−→ x7

u3−→ x1
u2−→ x6

e−→ x7
u3−→ · · · is a

three-step desirable-window infinite run. However, x1
b−→ x3

c−→
x4

u4−→ x5
u6−→ x1

b−→ x3
c−→ x4

u4−→ x5
u6−→ · · · is not a three-

step desirable-window infinite run as its fragment x5
u6−→ x1

b−→
x3

c−→ x4 is not a three-step desirable window due to ω(u6) < 0,
ω(u6b) < 0 and ω(u6bc) < 0. Moreover, unsafe state x8 is
reached under some strings. Hence, supervisory control is nec-
essary to restrict the behaviors of G. We will solve Problems 1
and 2 on G in the remaining sections of the article.

IV. WEIGHTED BIPARTITE TRANSITION SYSTEM

In order to solve Problems 1 and 2, we first transform the
automaton model in Section II to a two-player game between the
supervisor and the system (environment). This section tackles
the logical requirements and sets the basis for solving both
problems. The weighted bipartite transition system (WBTS) is
defined as the game graph, then a special WBTS is proposed,
which enforces the safety and liveness conditions.
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Definition 5 (Weighted Bipartite Transition System):
A WBTS with respect to system G is a tuple T =
(QY , QZ , E,Γ, fyz, fzy, ω, y0) such that we have the following.

� QY ⊆ X is the set of states where the supervisor plays.
� QZ ⊆ X × Γ is the set of states where the environment

plays, we let Sta(z) and Ctr(z) denote the two compo-
nents of z ∈ QZ , so z = (Sta(z), Ctr(z)).

� E is the set of events.
� Γ is the set of control decisions.
� fyz : QY × Γ → QZ is the transition function from QY

states toQZ states where for y ∈ QY , γ ∈ Γ, and z ∈ QZ ,
we have that fyz(y, γ) = (y, γ).

� fzy : QZ × E → QY is the transition function from QZ

states to QY states where, for z = (y, γ) ∈ QZ , e ∈ E,
and y′ ∈ QY , we have that fzy(z, e) = y′ ⇔ [e ∈ γ] ∧
[y′ = f(y, e)].

� ω : E → Z is the event weight function inherited from G
and labels fzy transitions.

� y0 ∈ QY is the initial state and y0 = x0.
The above concept is inspired by the bipartite transition

system defined in [48]. A WBTS T presents a game between
the supervisor and the environment. A QY state (Y -state) is
where the supervisor plays by making control decisions. Since
the supervisor has full observation, Y -states are from the sys-
tem’s state space X . We call a y ∈ QY safe if y /∈ Xus. A QZ

state (Z-state) consists of a Y -state plus a control decision,
where the environment plays by “selecting” enabled events to
occur. A fyz transition is defined from Y -states to Z-states to
remember the most recent decision of the supervisor. We use
CT (y) = {γ ∈ Γ : fyz(y, γ)!} to stand for the set of control
decisions at y ∈ QY . fzy is defined from Z-states to Y -states
which are reachable under the executed events in G. Since the
supervisor is unable to choose which event to occur, all enabled
events are defined at aZ-state. Essentially, we explicitly separate
the processes of making a control decision and executing enabled
events inT . Finally,ω is the same weight function inherited from
G and labels the events associated with fzy .

Given a WBTS T , a run in T is of the form r = y1
γ1−→

z1
e1−→ y2 · · · γn−→ zn

en−→ yn+1. We write y ∈ r and z ∈ r if y
(respectively z) is a Y -state (respectively Z-state) in r. We also
denote by Runy(T ) (respectively Runz(T )) the set of runs whose
last states are Y -states (respectively Z-states). A run is called
initial if its first state is the initial state of T . We also denote by
Runinf(T ) as the set of infinite runs in T .

Considering a run r in a WBTS T , we say it generates a run
y1

e1−→ y2
e2−→ · · · en−→ yn+1 in G when the control decisions and

Z-states are removed. By Definition 5 and simple induction,
we know that the generated run is in G as ∀i ≥ 1, yi ∈ X
and f(yi, ei) = yi+1 ∈ X . This shows the relation of the game
structure model and the automaton model.

Then it is natural to consider the strategies for both players
in the game. Generally, both players make new decisions based
on the history of all previous states and decisions, i.e., runs.
In a WBTS T , we define the supervisor’s strategy (control
strategy) as πs : Runy(T ) → Γ and the environment’s strategy
as πe : Runz(T ) → E. We denote the set of all supervisor’s and

environment’s strategies by Πs and Πe, respectively. A player
selects a transition at its position following its strategy.

From a Y -state y in T , if the supervisor plays πs and the
environment plays πe, a unique run is formed. We define
Run(πs, y, T ) = {y γ1−→ z1

e1−→ y2 · · · γn−1−−−→ zn−1
en−1−−−→ yn :

n ∈ N+, ∀i < n, γi = πs(y
γ1−→ z1

e1−→ y2 · · · γi−1−−→ zi−1
ei−1−−→

yi)} as the set of runs starting from y and consistent with
control strategy πs, i.e., the control decisions are specified
by πs. Similarly, we define the runs consistent with the
environment’s strategies.

The fyz transitions in a WBTS reflect the events enabled
under control decisions, while the fzy transitions reflect the
executions of the enabled events. By Definition 5, a control
strategy in T works the same as a standard supervisor in su-
pervisory control theory [6]. In what follows, we will use the
terms “supervisor” and “supervisor’s strategy (control strategy)”
interchangeably. Given a control strategyπs and string s, we will
use notations πs/G and πs(s) to stand for the supervised system
under πs and the control decision made by πs on occurrence
of s, respectively.

Intuitively, a strategy has memory if a player makes different
decisions when the same state is visited again; otherwise, it
is called memoryless. In a WBTS T , a control strategy πs

is of finite memory if it can be encoded as a deterministic
finite-state Moore automaton AM = (M, δm, δs,m0) where
M is the finite set of states representing the memory; δm :
M × (QY ∪QZ) → M is the transition function for memory
update; δs : M ×QY → QZ reflects the supervisor’s choice
of successor states. If the supervisor plays strategy πs at y ∈
QY with the current memory m ∈ M , then it chooses z =
δs(m, y) as the successor. After the supervisor makes the de-
cision, the memory of its strategy is updated to m′ = δm(m, y).
Formally, we may extract a control strategy πs from AM

such that πs(y1
γ1−→ z1

e1−→ y2 · · · γn−1−−−→ zn−1
en−1−−−→ yn) = γn,

fyz(yn, γn) = zn+1 = δs(δm(m0, y1z1y2 · · · zn−1), yn) where
the domain of δm can be extended to (QY ∪QZ)

∗ naturally.
πs is memoryless if |M | = 1, i.e., the supervisor’s choice only
depends on its current states. The memory of an environment’s
strategy is characterized analogously. The readers may refer
to [3] for more details concerning memory of game strategies.

Given a control strategy πs in a WBTS T , let a string
s = e1e2 · · · en ∈ L(πs/G) and the occurrence of s in-

duces a run r(s) = y0
πs(ε)−−−→ z0

e1−→ y2
πs(e1)−−−−→ z2

e2−→ · · · en−→
yn

πs(e1e2···en)−−−−−−−−→ zn in T . We denote by Y (s) and Z(s) the last
Y -state and Z-state of r(s), respectively. Formally speaking, if
πs is in T , then ∀s ∈ L(πs/G), πs(s) ∈ CT (Y (s)).

Let Q be a set of states in a WBTS T , then the supervisor’s
attractor with respect to Q is defined recursively as

AttrTs,0(Q) = Q

AttrTs,i+1(Q)

= {y ∈ QY \ AttrTs,i(Q) : ∃y γ−→ zs.t.z ∈ AttrTs,i(Q)}
∪ {z ∈ QZ \ AttrTs,i(Q) : ∀z e−→ y, y ∈ AttrTs,i(Q)}
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AttrTs (Q) =
⋃
i≥0

AttrTs,i(Q). (1)

By definition, the supervisor reaches Q from AttrTs,i(Q) by
i events for sure regardless of the environment’s strategies.
Therefore, AttrTs (Q) is the largest set of states from which the
supervisor is able to reach Q within finitely many transitions
regardless of the environment’s strategies. On the other hand, the
supervisor is unable to reach Q from states outside of AttrTs (Q);
otherwise, it contradicts the definition of the attractor. It is well
known that the attractor can be computed in linear time, provided
the game graph is finite [3]; thus, it takes O(n(T )) to compute
AttrTs (Q) where n(T ) denotes the number of transitions in T .
Note that we only add new states that are not in AttrTs,i(Q) in each
stage of calculating AttrTs (Q). The environment’s attractor with
respect to Q is defined analogously and denoted by AttrTe (Q).

Given a WBTS T and a set of states Q in T , we introduce a
rank function σ : QY ∪QZ → N associating with every state
the stage at which it is added to the attractor AttrTs (Q)

σ(q) =

{
i if q ∈ AttrTs,i(Q) for some i ≥ 0

∞ if q /∈ AttrTs (Q).
(2)

Here we define the rank for the supervisor’s attractor and the
rank for the environment’s attractor is defined analogously. Since
the attractor is calculated in a finite number of steps, σ is always
finite and may be obtained when the attractor is calculated.
Intuitively, the rank also reflects the “distance” between a state
q and the “destination” Q. A similar and more involved concept
was proposed in [37] for product automata.

The smaller theσ(q) is, the “closer” the q is toQ andσ(q) = 0
if q ∈ Q. Accordingly, for any Y -state q ∈ AttrTs (Q) \Q, if
the supervisor always makes decisions to reach successor q′

with σ(q) > σ(q′), then we claim that the supervisor eventually
reaches Q after a finite number of steps. Otherwise, there will
be an infinite sequence of states q, q1, q2, · · · ∈ AttrTs (Q) \Q
such that σ(q) > σ(q1) > σ(q2) · · · , which is infeasible for
finite σ(q). This further implies that the supervisor always has a
strategy to reach Q from AttrTs (Q) \Q, by choosing successor
states with a decreasing rank. This observation will play a role
in solving Problem 1 in the next section.

Given a WBTS T , a Y -state y is called a terminal state if it
has no successor states. When there are no active events defined
at y in G, the supervisor is unable to make control decisions and
y is terminal, i.e., CT (y) = ∅. Moreover, T is called complete if
∀y ∈ QY , y has successors. In addition, a Z-state z is terminal
if �e ∈ E, s.t. fzy(z, e)!, i.e., the supervisor disables all events.
Terminal states should be avoided since they contradict with the
liveness requirement: There should always be events defined out
of a state in the supervised system. If T is complete, then the
supervisors in T are always able to make decisions, resulting in
a live supervised system.

For a complete WBTST , we may explicitly “extract” a unique
supervisor from it if we specify a control decision at eachY -state
in T . We denote this supervisor by ST which is realized by an
automaton GT = (QY , E, ξ, y0). Here, ξ : QY × E → QY is
the transition function such that ∀y ∈ QY , ∀e ∈ E: ξ(y, e) =

fzy(fyz(y, γ), e) if γ is chosen at y and e ∈ γ and γ is chosen at
y. y0 is the initial Y -state of T . We may compute the language
of the supervised system as L(ST /G) = L(ST ×G) where ×
is the standard product operation between automata [6].

Given two WBTSs T1 = (Q1
Y , Q

1
Z , E,Γ, f1

yz, f
1
zy, ω

1, y10)
and T2 = (Q2

Y , Q
2
Z , E,Γ, f2

yz, f
2
zy, ω

2, y20), we say that T1 is
a subgame of T2, denoted by T1 � T2, if Q1

Y ⊆ Q2
Y , Q1

Z ⊆ Q2
Z

and for all y ∈ Q1
Y , z ∈ Q1

Z , γ ∈ Γ, e ∈ E, we have f1
yz(y, γ) =

z ⇒ f2
yz(y, γ) = z and f1

zy(z, e) = y ⇒ f2
zy(z, e) = y. Here

the relation of the two weight functions does not really matter.
Given a WBTS T and a set of states Q ⊆ QY ∪QZ , we denote
by T ′ = T � Q if T ′ � T and Q is the state space of T ′, i.e., the
game on T is restricted to a subgame T ′ whose state space is Q.

Then we propose Algorithm 1 to construct the maximum
complete WBTS without terminal Z-states or unsafe Y -
states, with respect to automaton G. It is denoted by Tm =
(Qm

Y , Qm
Z , E,Γ, fm

yz, f
m
zy, ω, y0). The “maximum” is in the

graph merging sense, i.e., for any complete WBTS T without
terminal Z-states or unsafe Y -states, we have T � Tm. For
simplicity, we denote by |Tm| the number of states in Tm and
by ne the number of edges in Tm.

Algorithm 1 is inspired by the algorithm of constructing the
all enforcement structure in [48]. The major difference is that
the system in [48] is partially observed, while it is fully observed
here; so there is no need to consider unobservable reaches under
control decisions in this article. The main idea of Algorithm 1 is
to recursively build the state space of Tm in a depth-first search
manner until no more states are added. Note that we only include
nonterminal Z-states without unsafe state components, as done
in line 8. We prune away Y -states without successors as well
as their preceding Z-states in line 4 so that the final structure is
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Fig. 3. Resulting structure after DoDFS (without dashed/shaded
states).

complete. Following a similar argument with [48, Theorem V.I],
we show the correctness of Algorithm 1 as follows.

Proposition 1: Any control strategy in Tm is safe and live.
Proof: Similar to the proof of [48, Th. V.I] and we just sketch

the idea here. By Definition 5, Sta(z) tracks the reachable
states under control decision Ctr(z) for z ∈ Qm

Z . Then by Al-
gorithm 1, if for all z ∈ Qm

Z , we have Sta(z) /∈ Xus and ∃e ∈ E
such that fm

zy(z, e)!, i.e., no unsafe states in G are reached and
events are always enabled at z, then any control strategy in Tm

is always safe and live. �
Remark 2: We briefly analyze the complexity of Algorithm 1.

First, the procedureDoDFS may result in a structure that has, in
the worst case, |X| · 2|Ec| + |X| states (Z-states plus Y -states),
where 2|Ec| is the maximum number of feasible control deci-
sions. The complexity of the pruning process is quadratic in the
size of the returned structure after DoDFS. Thus, the overall
complexity of Algorithm 1 is O(|X|2 · 22|Ec|).

So far safety and liveness have been enforced for Problems 1
and 2. Before proceeding to fulfill the quantitative conditions,
we end this section with the following example.

Example 2: We revisit Example 1 and build Tm for the
system, following Algorithm 1. First, the DoDFS procedure
returns the WBTS shown in Fig. 3 . The rectangular states are
Y -states while the round rectangular states are Z-states. As is
seen, dashed Z-states (x3, γ

′
5), (x2, γ

′
6), and (x6, γ

′
7) are not

included during the procedure DoDFS at line 8 since they are
terminal. The shaded Z-state (x8, γ11) is not included either (at
line 8) sincex8 is an unsafe state. Due to the absence of (x8, γ11),
Y -state x8 has no successor. After that, Y -state x8 is removed
by the while loop in Algorithm 1, so is (x7, γ

′
10); the resulting

Tm is shown in Fig. 4 . We may verify that every control strategy
in Tm is both safe and live. However, not all of them satisfy the
quantitative conditions in Problem 1 or 2; thus, further analysis
is necessary to solve the problems.

Fig. 4. Tm in Example 2.

V. SUPERVISORY CONTROL UNDER DESIRABLE WINDOWS

With safety and liveness enforced in Section IV, we accom-
plish the quantitative requirements of Problem 1 in this section.
Several objectives are derived and a new game is formulated
between the supervisor and the environment. Then we leverage
results from total payoff games in the literature to solve the game,
which, in turn, solves Problem 1.

To solve Problem 1, the supervisor should only allow runs
with desirable windows onG. In parallel, we characterizen-step
desirable windows on Tm for a given window size n ∈ N+

Rund(Tm, n) = {r ∈ Run(Tm) : r = y1
γ1−→ z1

e1−→ y2 · · ·

en−→ yn+1, ∃� ≤ ns.t.
1

�

�∑
i=1

ω(ei) ≥ 0}. (3)

When the window size is not given a priori, we define the
desirable-window finite runs on Tm as follows:

Rund(Tm) = {r ∈ Run(Tm) : r = y1
γ1−→ z1

e1−→ y2 · · ·

en−→ yn+1, n ∈ N+, ∃� ≤ n s.t.
1

�

�∑
i=1

ω(ei) ≥ 0}. (4)

Then it comes to infinite runs in Tm and we introduce the
desirable-window objective as

Wd(Tm) = {r ∈ Runinf(Tm) : r = y1
γ1−→ z1

e1−→ y2 · · · ,

∃i ≥ 1s.t.∀j ≥ i, ∃� ≥ 1 :
1

�

�−1∑
p=0

ω(ej+p) ≥ 0}. (5)

Comparing (3) with (4), we find that if desirable-window
finite runs are successively formed on an infinite run, then
such infinite run is included in Wd(Tm). The supervisor is
said to achieve Wd(Tm) if it has a strategy πs such that any
infinite run consistent with πs is in Wd(Tm). In other words, the
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supervisor perpetually forms desirable-window finite runs on
Tm. Correspondingly, we formulate a new game on Tm, where
the supervisor wins by achieving the desirable-window objective
while the environment wins by preventing the supervisor from
achieving it. In fact, infinite runs in Wd(Tm) generate desirable-
window infinite runs in the original system G. In what follows,
we will study how to achieve Wd(Tm) and show that Problem 1
is solved by supervisors achieving Wd(Tm).

Before proceeding to solve Problem 1, we briefly review the
concept of total payoff games [4], which is involved in the
following analysis. Given a run r = y1

γ1−→ z1
e1−→ y2 · · · γn−→

zn
en−→ yn+1 in Tm, its total payoff is

∑n
i=1 ω(ei). Note that

the total payoff game is an infinite game where the supervisor
wins if it has a strategy to form infinite runs with nonnegative
(limit) total payoffs. Then we define the following objective:

Tot(Tm) = {r ∈ Runinf(Tm) : r = y1
γ1−→ z1

e1−→ y2 · · · ,

lim sup
n→∞

n∑
i=1

ω(ei) ≥ 0}. (6)

The supremum in (6) ensures that the limit sum is well defined.
Conversely, the environment wins the total payoff game if it has
a strategy to prevent the supervisor from achieving (a subset
of) Tot(Tm). It is shown in [4] that memoryless strategies are
sufficient to win the total payoff game.

We have formulated a game with objective Wd(Tm). Note
that our game on Tm with Wd(Tm) may be viewed as a special
form of the bounded window mean payoff game in [7], where
the transitions from the supervisor’s states in Tm have zero
weight. Results from total payoff games are employed in [7] to
calculate the winning regions for bounded window mean payoff
games. Since we are dealing with a similar objective, we leverage
results from [7] and total payoff games [4] to solve our game.
Later on, we also propose an algorithm to synthesize supervisors
from the game, which is not discussed in the literature [7]. Two
lemmas (i.e.,[7, Lemmas 10 and 11]) are repeated below in our
context to establish the connection between a total payoff game
with desirable windows; detailed proofs are omitted since they
directly follow the lemmas in [7].

Lemma 1: If the supervisor wins for Tot(Tm) from a state
in Tm, then it may play the same strategy to form (|Tm| − 1) ·
(|Tm| ·W + 1)-step desirable windows from that state.

Suppose πs is a supervisor’s winning strategy for Tot(Tm).
The main idea for showing Lemma 1 is to decompose any run
consistent with πs into its acyclic part and cyclic part (some
cycles). Then by inspecting the total payoff of run prefixes, we
can bound the length of the desirable windows.

Lemma 2: If the environment has a strategy to win the total
payoff game from a state in Tm, then it has a strategy πe to
ensure that for every run starting from that state and consistent
with πe, there exists a position in the run such that all suffixes
from that position have negative total payoff.

Lemma 2 can be proved by contradiction. The idea is that if
this lemma does not hold, then any run consistent withπe may be
decomposed as a sequence of run fragments with a nonnegative
total payoff, which implies that the total payoff of the run is

also nonnegative; thus, a contradiction with πe being a winning
strategy for the environment.

We term the set of states where the supervisor achieves
Wd(Tm) as the (supervisor’s) winning region for Wd(Tm) and
denote it by Wdw

s . Based on Lemmas 1 and 2, we slightly adapt
[7, Algorithms 4 and 5] to present our Algorithm 2 for computing
Wdw

s . Specifically, we introduce an index I to label states in
Wdw

s , which reflects when a state is added to Wdw
s and plays a

role in supervisor synthesis later on.
Algorithm 2 computes the set of states where the environ-

ment forms undesirable windows via the procedure NegWin-
dow. Since the desirable-window objective does not depend on
the prefixes of runs, the environment should repeatedly form
undesirable windows to force the supervisor to lose the game.
We denote by Wneg the set of states where the environment
forms infinite runs with negative total payoff; thus, Wd(Tm) is
violated. Obviously, the supervisor should avoid states returned
by NegWindow. In other words, states not in NegWindow(Tm)
and their attractor states contribute to the supervisor’s winning
region Wdw

s . At the beginning, we assume that no state is
winning for the supervisor in line 1. Then we continually reduce
the environment’s potential choices which prevent the supervisor
from achieving the desirable-window objective and Wneg may
be shrunk each time NegTotal(Tm) is called. As a result, more
states are declared winning for the supervisor by recursively
calling NegTotal(Tm) and calculating the attractor of those
states, until no new states are added to the winning region Wdw

s .
This is essentially the computation of a fixed point. In line 8, we
index each new state by the first time it is added to Wdw

s .
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Now we take a closer look at the procedure NegWindow. By
Lemma 2, it suffices to compute the environment’s attractor for
the set of states from which the environment achieves a negative
total payoff. The routine NegTotal calls the pseudopolynomial
value iteration method developed in [4] (Algorithm 2 and the
strategy mentioned in Section 4.3) and returns the states where
the environment wins the total payoff game on the current game
graph. The idea of the leveraged algorithm is to proceed through
nested fixed points and the technical details concerning the
algorithm are omitted here for simplicity.

Remark 3: We briefly discuss the complexity of Algorithm 2.
Here, we denote by ne the number of edges in Tm and O
the complexity of procedure NegTotal, i.e., the complexity of
solving a total payoff game. First, the complexity for procedure
NegWindow isO(|Tm| · (ne + O)) since we take at most |Tm|
times of computation and each computation takes (ne + O)).
Then the overall complexity of Algorithm 2 is O(O + |Tm| ·
(ne + |Tm| · (ne + O))) = O(|Tm|2 · (ne + O))). A software
tool called PRISM-games developed in [23] efficiently solves to-
tal payoff games, which also helps us to implement Algorithm 2.

The correctness of Algorithm 2 in computing Wdw
s is shown

similarly to [7, Algorithms 4 and 5] and the proof is omitted here.
The main idea is that the environment prevents the supervisor
from winning forWd(Tm) by denying a nonnegative total payoff
from states not in Wdw

s . So the desirable-window objective is
never achieved from those states, while the supervisor wins the
game from Wdw

s .
By running Algorithm 2, we collect two sequences of states

[Wneg] = Wneg(0),Wneg(1), . . . ,Wneg(n) (7)

[Wdw
s ] = Wdw

s (0),W neg(1), . . . ,W dw
s (n). (8)

As Tm is finite and Algorithm 2 always terminates,
both sequences are finite. Interestingly, they form two
“chains”: Wdw

s (i) ⊆ Wdw
s (j) and Wneg(j) ⊆ Wneg(i)

for any i, j, 0 ≤ i < j ≤ n. Also we know that
Wneg(0) = NegWindow(Tm), Wdw

s (n) = Wdw
s and

Wdw
s (k) = AttrTm

s ((Qm
Y ∪Qm

Z ) \Wneg(k − 1)) for every
1 ≤ k ≤ n by Algorithm 2. When the supervisor’s winning
region Wdw

s is not empty and the initial state of Tm is included
in Wdw

s , we denote by T dw
win = Tm � Wdw

s , whose state space
is Wdw

s . Otherwise, we let T dw
win be empty. When T dw

win is
not empty, Algorithm 3 is presented below to synthesize a
supervisor that wins the game and achieves Wd(Tm).

Intuitively, Algorithm 3 specifies a control decision at each
Y -state in Wdw

s to lead the supervisor to states where it can
perpetually achieve desirable-window runs. More specifically,
every Y -state belongs to some Wdw

s (k) and two cases are
categorized. First, if the current state y is not yet in ((Qm

Y ∪
Qm

Z ) \Wneg(k − 1)), then in line 6, the supervisor makes a
decision to reach a successor that has a lower rank and is
in AttrTm

s ((Qm
Y ∪Qm

Z ) \Wneg(k − 1)). Note that by the def-
inition of the attractor [see (1)] and the discussion in Sec-
tion IV, γ will contribute to leading the supervisor toward
(Qm

Y ∪Qm
Z ) \Wneg(k − 1) ultimately. On the other hand, if the

supervisor is already in ((Qm
Y ∪Qm

Z ) \Wneg(k − 1)), then it
chooses the decision specified by solving the total payoff game

through the method in [4] (Algorithm 2 and Section 4.3), as in
line 8. The supervisor follows the decision as it is playing the
total payoff game. Since the environment wins the total payoff
game from Wneg(k − 1) by Algorithm 2, the supervisor wins
the total payoff game from (Qm

Y ∪Qm
Z ) \Wneg(k − 1). Also by

Lemma 1, the supervisor may play the same strategy winning
the total payoff game to achieveWd(Tm). Therefore, the control
decision γ specified at line 8 contributes to achieving Wd(Tm).
Since Procedure Syn runs on the attractor of the supervisor,
the environment is unable to force the supervisor out of Wdw

s .
Syn is recursively called until a control decision is specified at
every Y -state. Finally a supervisor is returned in line 2, which
is memoryless since making a decision following the attractor
requires no memory, as shown in [3], and it is sufficient to win
a total payoff game by memoryless strategies, following [4].

Theorem 1: There exists a supervisor that solves Problem 1
if and only if T dw

win is not empty.
Proof: (“if”) When T dw

win is not empty, we denote by S
a supervisor returned by Algorithm 3. Then for any Y -state
y ∈ Wdw

s , we know that there exists 1 ≤ k ≤ n such that y ∈
Wdw

s (k) = AttrTm
s ((Qm

Y ∪Qm
Z ) \Wneg(k − 1)). Then for any

infinite run r starting from y and consistent with S in Tm, we
have that r ∈ Wd(Tm) by Algorithm 3. Thus, the run generated
by r in the supervised systemS/G is a desirable-window infinite
run, which implies that S solves Problem 1.

(“only if”) We show it by contrapositive. When T dw
win is empty,

we know that in Tm, for any control strategy πs, there exists
an initial run r consistent with πs such that r /∈ Wd(Tm). This
further implies that the run generated by r in the supervised
system under πs is not a desirable-window infinite run. That
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Fig. 5. Supervisor solving Problem 1.

is, no matter what strategy the supervisor plays, the second
condition in Problem 1 is not satisfied. Therefore, there does
not exist a supervisor solving Problem 1. �

Theorem 1 shows the correctness and completeness of our
method to solve Problem 1. We are always able to synthesize
a supervisor provided that T dw

win not empty. At the end of this
section, we present an example to illustrate the process of
computing the winning region and synthesizing supervisors.

Example 3: We continue Example 2 to completely solve
Problem 1 for the system G in Example 1. First, it is easily seen

that the run x1
a−→ x2

d−→ x1
a−→ · · · in Fig. 2 is not a desirable-

window infinite run since ω(ad) < 0; thus, supervisory control
is necessary to restrict the behaviors of G.

Based on the intermediate results in Example 2, we run
Algorithm 2, which returns the supervisor’s winning region
Wdw

s exactly the state space of Tm in Fig. 4. In other words, the
supervisor achieves the desirable-window objective from every
state in Fig. 4; thus, we are flexible for supervisor synthesis.
Next, we run Algorithm 3 and choose control decision γ1 at x1.
The resulting supervisor S is extracted from Tm following the
argument in Section IV and it is shown in Fig. 5 . We may verify
that every infinite run in S/G is a desirable-window infinite run;
so S correctly solves Problem 1.

VI. SUPERVISORY CONTROL UNDER N-STEP

DESIRABLE WINDOWS

After solving Problem 1, we investigate how to synthesize
supervisors for Problem 2 in this section. For this purpose, we
first transform the local mean payoff condition in Problem 2 to a
properly defined objective for the supervisor on Tm obtained in
Section IV. Correspondingly, a new two-player game is formu-
lated and then analyzed. Finally, we characterize the supervisor’s
winning region for the game and obtain its winning strategies,
which completely solves Problem 2.

A. Compute the Supervisor’s Winning Region

In Tm, we define the N-step desirable-window objective
Wd(Tm, N) for both players as

Wd(Tm, N) = {r ∈ Run(Tm) : r = y1
γ1−→ z1

e1−→ y2 · · · ,

∃i ≥ 1s.t.∀j ≥ i, ∃� ≤ N,
1

�

�−1∑
p=0

ω(ej+p) ≥ 0}. (9)

Then we form a new game on Tm where the supervisor wins
by achieving Wd(Tm, N), which implies that the supervisor
perpetually forms runs in Rund(Tm, N); see (3). Note that runs

in Wd(Tm, N) generate N -step desirable-window infinite runs.
So if the supervisor achieves Wd(Tm, N), then it also solves
Problem 2. To further evaluate Wd(Tm, N), we introduce the
window payoff functions in Tm.

Definition 6 (Window Payoff Functions): In Tm with window
size N ∈ N+, for 0 ≤ i ≤ N , define the window payoff func-
tion recursively as hi : Q

m
Y ∪Qm

Z → Z where

∀q ∈ Qm
Y ∪Qm

Z : h0(q) = 0

∀q ∈ Qm
Y , ∀1 ≤ i ≤ N : hi(q) = max

z∈Qm
Z ,γ∈Γ

{hi(z) : f
m
yz(q, γ) = z}

∀q ∈ Qm
Z , ∀1 ≤ i ≤ N : hi(q) = min

y∈Qm
Y ,e∈E

{ω(e) + hi−1(y) :

fm
zy(q, e) = y}.

The window payoff functions track the best worst-case total
weights that the supervisor may achieve from a state inTm within
at most N event occurrences. The supervisor aims to achieve a
nonnegative total payoff (also mean payoff) within the next N
enabled events, while the environment aims to spoil that goal by
achieving a negative payoff. If the current state q is a Y -state
(supervisor’s position), we maximize the value of hi(q) for each
1 ≤ i ≤ N by choosing successor states. Note that we do not
increase the index i since an fm

yz transition corresponds to a
control decision but not an event occurrence. Otherwise, if q is a
Z-state (environment’s position), we minimize the total payoff
to-go so as to calculate hi(q), where we increase the index as an
fm
zy transition indicates one event occurrence. This “min–max”

way of defininghi(q) is due to calculating the worst possible sum
of weights after the occurrence of enabled events, and choosing
the best possible sum of weights for the supervisor to achieve
Wd(Tm, N). By definition, the value of hi(q) depends on the
values of the window payoff functions for the successor states
of q. Therefore, we are able to track a run from q in Tm, whose
control decisions and i event occurrences lead to hi(q).

If a state q in Tm is with hi(q) ≥ 0 for some 1 ≤ i ≤ N ,
then there is an N -step desirable window [see (3)] starting from
q. Therefore, the supervisor achieves Wd(Tm, N) by reaching
such states infinitely often and the environment should prevent
the supervisor from doing so. Thus, both players are playing
a Büchi-like game [3]. The determinacy of Büchi games [3]
states that only one player wins the game from each state on
the game graph. We denote by Wndw

s the set of states where
the supervisor wins the game for Wd(Tm, N), termed winning
region. For the supervisor, a state in Wndw

s is called winning,
while a state not in Wndw

s is called losing. The complement of
Wndw

s is the environment’s winning region for preventing the
supervisor from achieving Wd(Tm, N).

Compared with conventional Büchi games [3], we need to en-
sure that states in {q ∈ Qm

Y ∪Qm
Z : hi(q) ≥ 0 for 1 ≤ i ≤ N}

are not only reached infinitely often but also consecutively. This
is due to (9) where a nonnegative weight sum should be enforced
repeatedly without any break. For this reason, Algorithm 4 is
proposed to recursively compute the supervisor’s winning region
for Wd(Tm, N). It generalizes the standard divide-and-conquer
algorithm for solving Büchi games [3].
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Initially at line 1, each state in Tm is viewed as a potentially
losing state for the supervisor. In line 3, we call procedure
WinLocal to compute state set Wn

p from which the supervisor
achievesWd(Tm, N). Then in line 4, we add new winning states
to the supervisor’s winning region Ws. Since Wd(Tm, N) does
not depend on the finite prefixes of runs consistent with the
supervisor’s strategies, if the supervisor is winning from Wn

p , it
also wins from the attractor ofWn

p , i.e.,Wn
attr calculated in line 4.

Hence, the environment must avoid entering Wn
attr and remain

in the subgame described by line 5 to preserve the chance of
winning the game. States removed in line 5 may be viewed
as the increment of the supervisor’s winning region at each
iteration. After that, we iterate on the remaining subgame and
call again procedure WinLocal to find more winning states for
the supervisor; note thatTm gets updated in lines 5 and 11. In this
manner, if the supervisor wins the game for Wd(Tm, N) from a
state in Wndw

s , then it also does so from all its successor states,
which are contained in Wndw

s as well. Algorithm 4 essentially
computes the greatest fixed point. When it terminates, the states
not in Wndw

s are where the environment can falsify the N-step
desirable window objective.

Procedure StableWindow computes values of window payoff
functions for each state in the current game structure and returns
Wg in line 20. Then the supervisor plays the strategy prescribed
byhi(q) ≥ 0 (following the decisions leading tohi(q)) to ensure
a nonnegative sum of weights within N event occurrences from
its current state. In general, the supervisor has memory as it
needs to “remember” how hi(q) ≥ 0 is achieved from state q

each time it makes a decision, and it suffices to record at most
N states, which is shown in the next subsection.

Theorem 2: Algorithm 4 correctly computes the supervisor’s
winning region for Wd(Tm, N).

Proof: Let Wndw
s be the set of states where the supervisor

achieves Wd(Tm, N). We show that a state q is returned by
Algorithm 4 if and only if q ∈ Wndw

s . That is, there exists a
control strategy πs ∈ Πs such that for all πe ∈ Πe, the run from
q and generated under (πs, πe) is in Wd(Tm, N).

“Only if”: Algorithm 4 returns ∪n≥0Wn
attr. By the definition

of attractor and Algorithm 4, we have that Wi
attr ∩Wj

attr = ∅
and Wi

p ∩Wj
p = ∅ for any i �= j. Let q ∈ ∪n≥0Wn

attr, then there
exists a unique n such that q ∈ Wn

attr. By construction, the super-
visor has a strategy to reach and stay in Wn

p ∪Wn−1
attr · · · ∪ W0

attr
forever afterwards. Since the runs consistent with the supervi-
sor’s strategy are infinite, the supervisor will eventually enter
some W l

p, 0 ≤ � ≤ n. After that, the supervisor always forms
nonnegative weight sums within N event occurrences and, thus,
achieves Wd(Tm, N) which further implies that q ∈ Wndw

s .
“If”: Suppose that q ∈ Wndw

s ; we show that q ∈ ∪n≥0Wn
attr

by contradiction. If q /∈ ∪n≥0Wn
attr, then the environment always

has a strategy from q to avoid reaching ∪n≥0Wn
attr and, thus,

spoils Wd(Tm, N). That is, from any run starting from q, there
exist some states along it, whose window payoff functions are
negative for all 1 ≤ i ≤ N . So the environment may remain
outside∪n≥0Wn

attr and visit such states infinitely often to prevent
the supervisor from achievingWd(Tm, N). However, this means
that the supervisor fails to achieve Wd(Tm, N) from q, which
contradicts with q ∈ Wndw

s . �
By Theorem 2, if the supervisor’s winning region Wndw

s is
not empty and the initial state of Tm is included in Wndw

s ,
then the supervisor has strategies to win the game and achieve
Wd(Tm, N) from the initial state. If this is the case, then we
denote by Tndw

win = Tm � Wndw
s , whose state space is Wndw

s .
Otherwise, we let Tndw

win be empty.
Theorem 3: There exists a supervisor that solves Problem 2

if and only if Tndw
win is not empty.

Proof: (“If”) When Tndw
win is not empty, we know that from

any state in Tndw
win , there exists a control strategy πs, such that

for all environment’s strategy πe, the run starting from the state
and consistent with (πs, πe) is in Wd(Tm, N). Therefore, an
N -step desirable-window infinite run is generated by r(πs, πe)
in πs/G, which implies that πs solves Problem 2.

(“only if”) We show it by contrapositive. When Tndw
win is

empty, then by Theorem 2, we know that for any control strategy
πs, there exists an initial run r consistent with πs in Tm such
that r /∈ Wd(Tm, N). This further implies that the run generated
by r in the supervised system is not a N -step desirable-window
infinite run. So regardless of the supervisor’s strategy, there exist
runs in the supervised system that violate the second condition
of Problem 2, which means that there does not exist a supervisor
solving Problem 2. �

Up till now, we have shown the soundness and completeness
of Algorithm 4 for computing the supervisor’s winning region.
We will discuss supervisor synthesis on Tndw

win in the next sub-
section if Tndw

win is not empty.
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Fig. 6. Tndw
win with the supervisor’s winning region in Example 4.

Remark 4: We briefly discuss the complexity of Algorithm 4.
First, since each edge of the game graph is visited at most N
times to compute window payoff functions, the complexity of
procedure StableWindow is the procedure O(ne ·N). Then
in procedure WinLocal, we call the procedure StableWindow
for at most |Tm| times; so its complexity is O(|Tm| · ne ·N).
Finally, we call procedure WinLocal for at most |Tm| times
in Algorithm 4 and computing the attractor is linear in ne.
Therefore, the total (worst case) complexity of the algorithm
is O(|Tm| · (ne + |Tm| · ne ·N))) = O(|Tm|2 · ne ·N).

Example 4: We continue Example 2 and solve Problem 2
where we set the window size N = 3. Based on the game
graph constructed in Example 2, we follow Algorithm 4
to compute the winning region of the supervisor for
Wd(Tm, N). First, we calculate the values of window
payoff functions for each state in Tm and the results
are shown as follows. For simplicity, we associate a
four-dimensional vector with each state q ∈ Qm

Y ∪Qm
Z

and the elements in the vector are h0(q) through h3(q).
x0 : [0,−5,−4,−1], (x0, γ0) : [0,−5,−4,−1], x1 : [0, 1, 4, 4],
(x1, γ1) : [0, 1, 3, 4], (x1, γ2) : [0,−1,−6,−5], (x1, γ3) :
[0,−1,−6,−5], (x1, γ4) : [0, 1, 4, 4], x2 : [0,−5,−4,−1],
(x2, γ6) : [0,−5,−4,−1], x3 : [0, 2, 6, 2], (x3, γ5) : [0, 2, 6, 2],
x4 : [0, 4, 0, 1], (x4, γ8) : [0, 4, 0, 1], x5 : [0,−4,−3, 0],
(x5, γ9) : [0,−4,−3, 0], x6 : [0, 3, 3, 4], (x6, γ7) : [0, 3, 3, 4],
x7 : [0, 0, 1, 4], and (x7, γ10) : [0, 0, 1, 4].

After one iteration of procedure StableWindow, states
(x1, γ2), (x1, γ3), x2, and (x2, γ6) are not in Wg since the
values of their window payoff functions are negative for all
i ≥ 1. All states reachable from x1 in Fig. 6 are returned by
StableWindow and are, thus, included in Wp after procedure
WinLocal. Although both x0 and (x0, γ0) have negative hi for
all i ≥ 1, they are still included inWndw

s since they are in the su-
pervisor’s attractor ofx1. Note thatWndw

s = AttrTm
s (Wndw

s ) in
this example. Finally, Tndw

win is shown in Fig. 6 whose state space
constitutes the supervisor’s winning region in this example.

B. Synthesize Winning Supervisors

We proceed to discuss supervisor synthesis in this subsec-
tion. The counterpart of Algorithm 3 is proposed, which is
more complicated due to the memory of supervisors solving
Problem 2. At the beginning, we define first desirable-window
decision sequences to characterize how the supervisor achieves
a nonnegative weight sum within the next N event occurrences
from the current Y -state. Here, we denote byWlocal = ∪n≥0Wn

p

the union of each Wn
p obtained from line 3 of Algorithm 4.

Definition 7 (First Desirable-Window Decision Sequences):
In Tndw

win , at Y -state y ∈ Wlocal, a sequence of control decisions
γ1γ2 · · · γj ∈ Γ∗ with j ≤ N forms a desirable-window deci-

sion sequence if there exists a run r = y
γ1−→ z1

e1−→ y2 · · · γj−→
zj

ej−→ yj such that
∑j

k=1 ω(ek) = hj(y) where j = min{1 ≤
i ≤ N : hi(y) ≥ 0}.

A supervisor achieves theN -step desirable-window objective
Wd(Tm, N) in two steps. First, it issues decisions to reach
a state in Wlocal. Then it may repeatedly play strategies pre-
scribed by StableWindow in Algorithm 4 to perpetually ensure
a nonnegative weight sum within N event occurrences. To be
more specific, at some Y -state y ∈ Wlocal, there should exist a
first desirable-window decision sequence so that the supervi-
sor achieves a nonnegative sum; otherwise, it contradicts with
y ∈ Wlocal. Then due to the inductive property (Remark 1 in
Section III), the supervisor may play another first desirable-
window decision sequence from yj described in Definition 7,
and it continues in this manner afterwards. In the above process,
the supervisor keeps a memory bounded by N at each Y -state,
which reflects how it selects successor states (control decisions)
to achieve a nonnegative weight sum. The memory may be reset
immediately after a nonnegative weight sum is achieved within
the next N event occurrences.

Consequently, we “unfold” the WBTS and introduce the
extended weighted bipartite transition system (EWBTS) w.r.t. a
WBTS T as a tuple: TE = (QE

Y , Q
E
Z , E,Γ, fe

yz, f
e
zy, δ, ω, y

e
0).

Here, we have QE
Y = QY × N and QE

Z = QZ × N. With
a slight abuse of notation, we also call QE

Y -states as
Y -states and QE

Z -states as Z-states. fe
yz : QE

Y × Γ → QE
Z and

fe
zy : QE

Z × E → QE
Y are the transition functions. Specifically,

fe
yz((y, n), γ) (respectively fe

zy((z, n), e)) is of the form
(fyz(y, γ), δ(y, n, γ)) (respectively ((fzy(z, e), δ(z, n, e)),
where ξ : (QE

Y ∪QE
Z )× N × (Γ ∪ E) → N is some function

that updates the integer component of the states. The exact
form of δ is left unspecified here and will be defined when
we introduce a special EWBTS. ye0 = (y0, 0) is the initial
state. TE also describes a game between the supervisor and the
environment; thus, the strategies for both players are defined
analogously. Similarly with the WBTS, we say that TE is
complete if ∀(y, n) ∈ QE

Y , CTE
((y, n)) �= ∅.

From the definition of the EWBTS, if we restrict the domains
of fe

yz and fe
zy toQY andQZ , respectively, then they are reduced

to fyz and fzy in a WBTS, respectively. However, function δ has
not been defined yet and it is left to count the number of times that
a state in the WBTS is revisited when the game graph is unfolded.
Then we introduce the unfolded weighted bipartite transition
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system (UWBTS) as follows. For simplicity, we write (y, n) ∈
QE

Y as yn and (z, n) ∈ QE
Z as zn. Given a state qe in a EWBTS

TE , we let PreTE

Y (qe) and PreTE

Z (qe) denote, respectively, the set
of Y -states and the set of Z-states that may reach qe, excluding
qe itself. Here, we also let | · | be cardinality of a set.

Definition 8 (Unfolded Weighted Bipartite Transition Sys-
tem): A UWBTS is an EWBTS of a complete WBTS T . It
is a tuple U = (QU

Y , Q
U
Z , E,Γ, fu

yz, f
u
zy, δu, ω, y

u
0 ) where 1)

∀yn ∈ QU
Y :|CU (y

n)| = 1; 2) ∀zn ∈ QU
Z , ∀e ∈ E: fzy(z, e)! ⇔

fu
zy(z

n, e)!; 3) ∀yn ∈ QU
Y : n = |{yñ ∈ PreUY (y

n) : ñ ∈ N}|
and ∀zn′ ∈ QU

Z : n′ = |{zñ ∈ PreUZ (z
n) : ñ ∈ N}|; 4) the ter-

minal states of U are either terminal Z-states or Y -states of the
form yn with n ≥ 1.

Given a UWBTS U , item 1) in Definition 8 states that there is
a unique control decision defined at each Y -state yn in U . Item
2) illustrates that if fzy is defined at z ∈ QZ in the complete
WBTS T , then it should also be defined at zn ∈ QU

Z . Item 3)
specifies how function δu is updated with transitions, i.e., the
integer component of a state is n if there are n states in its
predecessors that have the same Y - or Z-state component. Item
4) implies that any branch of the UWBTS ends a repeatedY -state
of a Z-state without outgoing transitions.

Given a UWBTS U , we may also extract a supervisor from
it. First, we merge each Y -state yn with n ≥ 1 and its prede-
cessor state y0, which results in a new EWBTS, denoted by
Ũ . In other words, Ũ comes from removing states {yn ∈ QU

Y :
CU (y

n) = ∅} fromU , then making any transition that originally
reaches yn go to the corresponding y0 in Ũ . Therefore, Ũ
is a complete EWBTS. In addition, there is a unique control
decision at each Y -state in Ũ , which also indicates a unique
control strategy (supervisor) in Ũ . We denote this supervisor by
SU which is realized by an automaton GU = (QŨ

Y , E, ξ, yn0 ).
Here, y00 is the initial Y -state of Ũ ; ξ : QŨ

Y × E → QŨ
Y is the

transition function such that ∀yn ∈ QŨ
Y , ∀e ∈ E: ξ(yn, e) =

fu
zy(f

u
yz(y

n, CŨ (y
n)), e) if e ∈ CŨ (y). The language of the

supervised system is L(SU/G) = L(SU ×G).
Inspired by the idea of solving the nonblocking supervisory

control problem under partial observation in [47], we propose
Algorithm 5 which constructs a UWBTS U from Tndw

win , merges
the repeated Y -states, and returns a supervisor. The procedure
Unfold recursively adds new states and transitions from the
initial state y00 . As discussed earlier, a supervisor achieves
Wd(Tm, N) by first entering Wlocal and then repeatedly play-
ing first desirable-window decision sequences. Specifically, we
distinguish two cases. If the supervisor has not yet reached
Wlocal at the current Y -state yn, i.e., the corresponding y in
Tm does not belong to Wlocal, then we augment the current U
in line 7 to lead the supervisor to enter Wlocal. Otherwise, if the
supervisor has already entered Wlocal, then in line 9, we find a
first desirable-window decision sequence γ1γ2 · · · γj from state
y with hj(y) ≥ 0. Since the supervisor wins the game on Tndw

win
from all states in Wlocal, such a sequence always exists.

For a first desirable-window decision sequence, we consider
two cases and augment U correspondingly from line 9. First, if
the whole sequence γ1γ2 · · · γj is not in U , then we augment
U in line 11. Second, if part of the decision string γ�γ�+1 · · · γj

(� < j) already exists in U , then we augment U in line 14 so that
the augmented part is finally subsumed intoU . This is essentially
the merging process mentioned in the last paragraph. Thanks to
the inductive property (Remark 1 in Section III), we ensure that
an N -step desirable window will be formed from any Y -state

in yn
γ1−→ z

n′
1

1
e1−→ yn2

2

γ2−→ · · · ej−→ y
nj

j at line 9 so that we may
start finding another first desirable-window decision sequence
from y

nj

j . Meanwhile, there may be Z-states whose successors
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are not fully included in U , and then we augment U in line 17.
We also update the index of states in the process, which repeats
until no more states are added to U . The number of states in U
actually reflects the supervisor’s memory, which is bounded by
2 · |Tm| ·N since at most 2 ·N Y -states and Z-states are added
from each state in Tndw

win when U is extended by Definition 7,
and the state space of Tndw

win is at most |Tm|. A state in Tndw
win

is examined at most once in Algorithm 5 and the unfolding
is bounded by the length of a first desirable-window decision
sequence; thus, the algorithm terminates after all states in Tndw

win
are checked and the unfolding is finished.

Theorem 4: If a supervisor is synthesized by Algorithm 5,
then it solves Problem 2.

Proof: Suppose SU is returned by Algorithm 5. We run
Algorithm 5 when the supervisor has strategies to achieve
Wd(Tm, N). More specifically, the supervisor first make de-
cisions to enter states in Wlocal and then always make desirable-
window decision sequences to remain in Wlocal. By construction
ofU , the supervisor always reaches some state after which it may
perpetually play first desirable-window decision sequences to
achieve N -step desirable windows. Hence, every infinite run in
U belongs to Wd(Tm, N) [see (9)]. Since SU is extracted from
U , every infinite run in SU/G is an N-step desirable-window
infinite run. SU is already safe and live by Proposition 1; so it
solves Problem 2. �

Based on Theorems 2–4, we have shown the correctness and
completeness of the whole procedure of solving Problem 2: from
computing the winning region to synthesizing the supervisor. It
is always possible to synthesize a supervisor solving Problem 2
following Algorithms 4 and 5.

Remark 5: We briefly discuss the complexity of Algorithm 5.
In the procedure Unfold, there are at most |Tndw

win |(|Tndw
win | <=

|Tm|) states between a state in Tndw
win and states in Wlocal. Then

at most 2 ·N states are extended from each state in Tndw
win when

we take first desirable-window decision sequences. Next, at most
|Tndw

win | states in U are “merged” to extract the supervisor SU .
Therefore, Algorithm 5 is of complexity O(N · |Tm|).

Example 5: We continue Example 4 and synthesize a winning
supervisor from Tndw

win following Algorithm 5. First, we unfold
Tndw
win and let the supervisor play γ0 from the initial state x0.

By the occurrence of u1, we reach Y -state x1 in Wlocal. Next
we choose first desirable-window decision sequence γ1 at x1

(h1(x1) > 0), γ5 at x3 (h1(x3) > 0), γ8 at x4 (h1(x4) > 0), γ7
at x6 (h1(x6) > 0), and γ10 at x7 (h1(x7) = 0). Then we follow
lines 15–17 in Algorithm 5 to augment U by adding successor
states for the newly added Y -states and Z-states.

Note that at Y -state x5, the only first desirable-window
decision string is γ9γ4γ7 by which the supervisor achieves
h3(x5) = 0. This further implies that when x1 is visited again,
the supervisor has to make a different decision γ4. Hence,
we augment U with x5

γ9−→ (x5, γ9)
u6−→ x2

1
γ4−→ (x1, γ4)

u2−→ x6

since x6
γ7−→ (x6, γ7)

e−→ x7 already exists after the augmenta-
tion from x6. We continue construction until no more states are
added to U . Finally, a UWBTS U is constructed and shown in
Fig. 7 . The corresponding supervisor SU is extracted from U
following the earlier argument in this section and it is shown in
Fig. 8 . As is seen, SU has memory since it alternates between

Fig. 7. One U after procedure Unfold.

Fig. 8. Supervisor SU solving Problem 2.

enabling b and disabling b at x1. We may verify thatSU correctly
solves Problem 2 as every infinite run in SU/G is a three-step
desirable-window infinite run.

VII. CONCLUSION

We developed, for the first time, a supervisory control frame-
work which requires the local mean payoff within a fixed number
of events be bounded by given thresholds. Specifically, two
problems were formulated, depending on the window length.
In order to solve these problems, the WBTS was introduced
as a first step to transform the problems to a two-player game
between the supervisor and the environment, where the qual-
itative conditions were resolved. Then we proposed several
objectives for the supervisor and formulated two different games
on the corresponding WBTS. Both games were analyzed and the
algorithms for solving the games were proposed in sequence.
We showed that the synthesized winning strategies are provably
correct for the original supervisory control problems. Our results
can be naturally extended to the multidimensional case where
we consider weight vectors, and the details are not included here.
For future work, it would be of interest to explore the same set
of problems under partial observation.
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