
Automatica 93 (2018) 369–378

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Enforcement of opacity by public and private insertion functions✩

Yiding Ji a,*, Yi-Chin Wu a,b,1, Stéphane Lafortune a

a Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
b Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA

a r t i c l e i n f o

Article history:
Received 13 October 2016
Received in revised form 26 October 2017
Accepted 3 February 2018

Keywords:
Discrete event systems
Privacy
Opacity
Opacity enforcement
Insertion function

a b s t r a c t

We study the enforcement of opacity, an information-flow security property, using insertion functions
that insert fictitious events at the output of the system. The intruder is characterized as a passive external
observer whose malicious goal is to infer system secrets from observed traces of system events. We
consider the problems of enforcing opacity under the assumption that the intruder either knows or
does not know the structure of the insertion function; we term this requirement as public–private
enforceability. The case of private enforceability alone, where the intruder does not know the form of
the insertion function, is solved in our prior work. In this paper, we address the stronger requirement of
public–private enforceability, that requires opacity be preserved even if the intruder knows or discovers
the structure of the insertion function. We formulate the concept of public–private enforceability by
defining the notion of public safety. This leads to the notion of public–private enforcing (PP-enforcing)
insertion functions. We then identify a necessary and sufficient condition for an insertion function to
be PP-enforcing. We further show that if opacity is privately enforceable by the insertion mechanism,
then it is also public–private enforceable. Using these results, we present a new algorithm to synthesize
PP-enforcing insertion functions by a greedy-maximal strategy. This algorithm is the first of its kind to
guarantee opacity when insertion functions are made public or discovered by the intruder.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Opacity is an information-flow security property that charac-
terizes whether or not ‘‘secrets’’ of a given dynamic system can
be inferred by an outside observer termed the intruder, because of
its potentially malicious intentions. Due to its general formulation
that is applicable to many security and privacy issues that arise
in networked systems, opacity has received a lot of attention in
the literature on security and privacy since it was first introduced
in Mazaré (2004). The intruder is an outside observer that knows
the system structure and tries to infer the occurrence of the secret
by passively observing the output of the system. The system is said

✩ This work was partially supported by NSF grants CCF-1138860 (Expeditions
in Computing project ExCAPE: Expeditions in Computer Augmented Program En-
gineering) and CNS-1421122, and by the TerraSwarm Research Center, one of six
centers supported by the STARnet phase of the Focus Center Research Program
(FCRP) a Semiconductor Research Corporation program sponsored by MARCO and
DARPA. The material in this paper was partially presented at the 54th IEEE Con-
ference on Decision and Control, December 15–18, 2015, Osaka, Japan. This paper
was recommended for publication in revised form by Associate Editor Christoforos
Hadjicostis under the direction of Editor Christos G. Cassandras.

* Corresponding author.
E-mail addresses: jiyiding@umich.edu (Y. Ji), ycwu@umich.edu (Y.-C. Wu),

stephane@umich.edu (S. Lafortune).
1 Current address of the second author: Pure Storage, Mountain View, CA

94041, USA.

to be opaque if for every behavior induced by the secret (termed
secret behavior), there is another observationally-equivalent be-
havior that is not induced by the secret (termed non-secret behav-
ior). When opacity holds, the intruder is never sure if the system’s
output corresponds to a secret or a non-secret behavior.

Various representations of the system secret have been con-
sidered in the study of opacity. These representations have led to
the formalization of several notions of opacity for event-driven
models of dynamic systems. In the context of automata models,
the notions of initial-state opacity, current-state opacity, language-
based opacity, K -step opacity and infinite step opacity, have
been proposed; see, e.g., Cassez, Dubreil, and Marchand (2012),
Lin (2011), Saboori and Hadjicostis (2012b, 2013) and Yin and
Lafortune (2017). Opacity for infinite state systems is considered
in Chédor, Morvan, Pinchinat, and Marchand (2015) while opacity
under so-called Orwellian observers is investigated in Mullins and
Yeddes (2014). Opacity for Petri net models has been considered
in Bryans, Koutny, and Ryan (2005) and Tong, Li, Seatzu, and
Giua (2017b), among others. In addition, several stochastic notions
of opacity have been defined and investigated; see, e.g., Bérard,
Chatterjee, and Sznajder (2015), Bérard, Mullins, and Sassolas
(2015), Chen, Ibrahim, and Kumar (2017), Keroglou and Had-
jicostis (2013) and Saboori and Hadjicostis (2014). In Yin, Li,
Wang, and Li (2017), an algorithmwas proposed for verification of
infinite-step opacity in stochastic discrete event system. The recent

https://doi.org/10.1016/j.automatica.2018.03.041
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.03.041
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.03.041&domain=pdf
mailto:jiyiding@umich.edu
mailto:ycwu@umich.edu
mailto:stephane@umich.edu
https://doi.org/10.1016/j.automatica.2018.03.041

370 Y. Ji et al. / Automatica 93 (2018) 369–378

Fig. 1. The insertion mechanism.

survey paper (Jacob, Lesage, & Faure, 2016) may be consulted for
a detailed review of the literature on this topic.

When a given notion of opacity is violated, researchers have
proposed various methods for its enforcement. One popular ap-
proach is to design a minimally restrictive supervisor, which dis-
ables behaviors that violate opacity (Darondeau, Marchand, &
Ricker, 2015; Dubreil, Darondeau, & Marchand, 2010; Saboori &
Hadjicostis, 2012a; Takai & Oka, 2008). The work in Tong, Li,
Seatzu, and Giua (2017a) adopts a similar approach but focuses on
enforcing opacity with incomparable observations. The approach
in Yin and Lafortune (2016) is to embed in a finite structure all
feasible supervisors that enforce opacity and use this structure
to synthesize one supervisor with desired properties. The work
in Zhang, Shu, and Lin (2015) also lies in this category but dis-
cusses the problem from the perspective of maximum information
release. Several works, such as Cassez et al. (2012), Yin and
Lafortune (2015) and Yin and Li (2018), apply a sensor activation
framework to enforce opacity by building dynamic observers or
most-permissive observers. In Ylies and Hervé (2015), the authors
consider a delay mechanism, which enforces K -step opacity or
infinite-step opacity by delaying outputting system events until
the secret expires.

In contrast to the above approaches for enforcing opacity, we
proposed in our prior work (Wu & Lafortune, 2014) an insertion
mechanism that enforces opacity by inserting fictitious events at
the system’s output. Such events are assumed to be indistinguish-
able from genuine ones from the viewpoint of the intruder. As
in Wu and Lafortune (2014), our approach in this paper considers
event-driven dynamic systems modeled as automata. Specifically,
the system is a partially-observed and/or nondeterministic finite-
state automaton, and the secret is modeled as a set of secret states
in the automaton’s state space. The insertion mechanism, which
is depicted in Fig. 1, acts as an interface at the output of the
system; hence, it does not interfere with the system, in contrast
to the supervisory control based approaches. Insertion functions
can be generalized to edit functions that allow event erasure and
replacement, as considered in Ji and Lafortune (2017) and Wu,
Raman, Rawlings, Lafortune, and Seshia (2017). However, we fo-
cus on insertion functions in this paper. The method of insertion
functions has also been extended in Ji, Yin, and Lafortune (2018)
to study opacity enforcement under quantitative constraints.

In Wu and Lafortune (2014), it is assumed that the insertion
function used by the system is always kept private from the in-
truder. With this assumption, we have shown how to synthesize
insertion functions that only output strings consistent with the
non-secret behavior of the system and thus prevent the intruder
from being certain that a secret behavior has occurred. In this
paper, we relax that assumption. While the implementation of
the insertion function may be kept private at first, a sophisticated
intruder may learn the full set of modified behaviors output by
the insertion function, compare it with the system model, and
potentially reverse engineer the insertion function. Also, if the
intruder knows the system’s optimality criteria, it may follow the
optimal synthesis algorithm in Wu and Lafortune (2016) and
discover the correct insertion function. It may also be the case that
the system designers decide to make the insertion function public,

as is done in public-key cryptography, for example. Hence, there is
a need to design insertion functions that enforce opacity even when
their implementation becomes known to the intruder. Under the
same insertion mechanism as in Fig. 1, to enforce opacity regard-
less of whether or not the intruder knows the implementation of
the insertion function, we formally characterize a property called
public-and-private enforceability, or PP-enforceability for short. A
PP-enforcing insertion function is guaranteed to enforce opacity
when the insertion function is kept private and when it becomes
known to the intruder. In the former case, the insertion function
outputs only behaviors consistentwith non-secret behaviors of the
system. In the latter case, the insertion function is designed such
that for every secret behavior of the system, there is a non-secret
behavior of the system that has the samemodified output from the
insertion function.

The main contributions of this paper are as follows. First,
we formally characterize the properties of public enforceability
and of public–private enforceability, in the context of opacity
enforcement by insertion functions. We present conditions for
PP-enforceability and use them to derive an effective test under
which opacity is public–private enforceable. It turns out that if
there exists an insertion function that is privately enforcing, then
there also exists a (potentially different) insertion function that
is PP-enforcing. This result is established by defining a so-called
greedy criterion for selecting insertion functions in theAll Insertion
Structure (AIS) introduced in Wu and Lafortune (2014). These
new results lead to an algorithmic procedure, called Algorithm
INPRIVALIC-G, that is guaranteed to synthesize a PP-enforcing
insertion function if one exists.

The remaining sections of this paper are organized as fol-
lows. Section 2 introduces the system model and the notion of
opacity. Section 3 formally introduces insertion functions and the
notion of public-and-private enforceability, along with conditions
under which private enforceability and public–private enforce-
ability hold for a given insertion function. Section 4 starts by
reviewing the construction procedure of the All Insertion Structure
(AIS) from Wu and Lafortune (2016) and then identifies relevant
concepts and properties. In Section 5, we first present a sufficient
condition for insertion functions to be PP-enforcing, then define
the greedy criterion and show that a greedy insertion function is
PP-enforcing. Then, in Section 6, the INPRIVALIC-G Algorithm is
presented, which synthesizes PP-enforcing insertion functions by
using a greedy-maximal insertion criterion within the AIS. Finally,
Section 7 concludes the paper.

Preliminary versions of some of the results in sections 3.3 and
5.1 appear in Wu and Lafortune (2015). The results in Sections 4.2,
5.2 and 6 are new and do not appear in Wu and Lafortune (2015).
In particular, Algorithm INPRIVALIC-G of Section 6 is guaranteed
to output a PP-enforcing insertion function (if one exists) and is a
generalized and improved version of Algorithm INPRIVALIC in Wu
and Lafortune (2015), which outputs such a function only under
certain conditions.

2. Opacity notions for automata models

We consider opacity problems in event-driven dynamic sys-
tems. We assume the system’s state space is finite. Thus, the
dynamic system of interest is modeled as an automaton G =

(X, E, f , X0), where X is the finite set of states, E is the finite set
of events, f is the partial state transition function f : X × E →

2X , and X0 ⊆ X is the set of initial states. We allow G to be
nondeterministic, which explains why the codomain of f is the
power set ofX . The transition function is extended to domainX×E∗

in the standard manner (Cassandras & Lafortune, 2008); we still
denote the extended function by f . Also, we use the notation s < u
to denote that string s is a prefix of string u. In opacity problems,

Y. Ji et al. / Automatica 93 (2018) 369–378 371

the initial state need not be known a priori by the intruder and
thus we include a set of initial states X0 in the definition of G.
The language generated by G is the set of system behaviors that is
defined by L(G, X0) := {t ∈ E∗

: (∃x ∈ X0)[f (x, t) is defined]}. We
will write L(G) as short-hand for L(G, X0). The system G is partially
observable in general. Hence, the event set is partitioned into an
observable set Eo and an unobservable set Euo. Given a string t ∈ E∗,
its observable projection is the output of the natural projection P :

E∗
→ E∗

o , which is recursively defined as P(t) = P(t ′e) = P(t ′)P(e)
where t ′ ∈ E∗ and e ∈ E. The projection of an event is P(e) = e if
e ∈ Eo and P(e) = ϵ if e ∈ Euo ∪ {ϵ}, where ϵ is the empty string.

The setting of the opacity problem considered in this paper is
as follows: (1) the system is a partially observable and/or nonde-
terministic finite-state automaton G, as defined above; (2) G has a
secret (formally defined below); (3) the intruder is an observer of G
that knows the structure ofG but only observes the observable pro-
jections of the strings in L(G). Hence, the intruder uses its knowl-
edge of the structure of G and its online observations to infer if
the current observed string reveals the secret or not. Opacity holds
if no intruder’s estimate asserts that the real behavior is induced
by the secret (termed secret behavior). The system is opaque if for
every secret behavior, there is another observationally-equivalent
behavior that is not induced by the secret (termed non-secret
behavior).

Four notions of opacity studied in the literature are relevant to
this paper: current-state opacity (CSO), initial-state opacity (ISO),
language-based opacity (LBO), and initial-and-final-state opacity
(IFO). In CSO, the secret of the system is modeled by a set of
secret states denoted by XS , where XS ⊂ X; the secret is defined
analogously for the other notions. Since it was shown in Wu and
Lafortune (2013) that these four notions can bemapped to one and
another by polynomial algorithms, we derive our results in this
paper using only the notion of current-state opacity. Themappings
presented in Wu and Lafortune (2013) can be used to apply our
results to the other three notions.

Definition 1 (Current-State Opacity (CSO)). Given system G =

(X, E, f , X0), projection P , and the set of secret states XS , G is CSO
if ∀t ∈ LS := {t ∈ L(G, X0) : ∃x0 ∈ X0, f (x0, t) ∩ XS ̸= ∅},
∃t ′ ∈ LNS := {t ∈ L(G, X0) : ∃x0 ∈ X0, f (x0, t) ∩ (X \ XS) ̸= ∅}

such that P(t) = P(t ′).

In words, whenever the system generates a string t that ends
at a secret state in XS , there must exist a string t ′ such that t ′ ends
at a state in X \ XS and P(t) = P(t ′). Hence, the intruder cannot
ascertain for sure that the current system state is in XS .

To verify the above-mentioned opacity notions, we build the
corresponding forward state estimator and check if any estimate
contains only secret information (specifically, current states, initial
states, or initial-and-final-state pairs). A forward state estimator
is an automaton where the state reached by string s = P(t) ∈

P[L(G)] is the intruder’s [current-state; initial-state; initial-and-
final-state] estimate when the intruder observes string s after the
system generated string t . Specifically, CSO and LBO can be ver-
ified by the standard observer automaton defined in section 2.5.2
of Cassandras and Lafortune (2008); ISO and IFO can be verified
by the trellis-based initial-state estimator introduced in Saboori
and Hadjicostis (2013). For simplicity, we will call a forward state
estimator an estimator and denote it by E hereafter. Clearly, CSO
holds if no state of the observer automaton is a subset of XS , i.e., for
all t ∈ L(G), E (P(t)) ∩ (X \ XS) ̸= ∅.

3. Insertion mechanism for opacity enforcement

To enforce opacity, we proposed in our prior work (Wu &
Lafortune, 2014) an insertionmechanism, which inserts additional
fictitious events to the output of the system. As shown in Fig. 1,

the insertion function is an interface between the system and
outside observers. It receives the system’s output behavior, inserts
fictitious events if necessary, and outputs themodified output. The
set of allowed events to be inserted is defined to be equal to Eo. We
assume that the intruder cannot distinguish between an inserted
event and the corresponding genuine one in Eo.2 Wewish to design
insertion functions according to different specifications based on
the intruder’s knowledge: private, public, and public–private en-
forceability. The remainder of this paperwill focus on the strongest
specification among the three: public–private enforceability.

3.1. Insertion functions and insertion automata

An insertion function is defined as a (potentially partial) func-
tion fI : E∗

o × Eo → E∗
o that outputs a string with inserted events

based on the past observed behavior and the current observed
event. Given observable string seo ∈ P[L(G)], fI (s, eo) = sIeo when
string sI ∈ E∗

o is inserted before eo. We also define the string-
based version of fI , denoted by f strI , recursively from fI : f strI (ϵ) =

ϵ and f strI (seo) = f strI (s)fI (s, eo). Given G, the modified language
output by insertion function fI is denoted by f strI (P[L(G)]) =

{s̃ ∈ E∗
o : ∃s ∈ P[L(G)], f strI (s) = s̃}. When multiple events are in-

serted, we assume that they are inserted, hence observed, one by
one.3 Notice that the insertion functions fI (and corresponding f strI)
considered in this paper are deterministic.

We encode a given insertion function as an input/output (I/O)
automaton IA = (Xia, Eo, E+

o , fia, qia, xia,0) and call it an insertion
automaton. The state set Xia of IA could potentially be infinite. The
input set is Eo; the output set is a set of strings in E+

o = E∗
o Eo;

the transition function fia defines the dynamics of IA; the output
function qia is defined such that qia(x, eo) = sIeo where fia(xia,0, s) =

x, if fI (s, eo) = sIeo; and finally xia,0 is the initial state. More details
on I/O automata can be found in Cassandras and Lafortune (2008).

3.2. Private enforceability

In Wu and Lafortune (2014), we characterized the specification
of private enforceability that insertion functions need to satisfy.
Specifically, private enforceability is the combination of two prop-
erties: admissibility and private safety.4 Admissibility is an input
property for insertion functions; it requires insertion functions
to be defined for all P[L(G)]. This property is required since the
system’s behavior cannot be interfered with. For example, in ap-
plications where users query servers, we do not want to exclude
any query from a given user.

Definition 2 (Admissibility). Consider G, P , LS and LNS . An insertion
function fI is admissible if: ∀seo ∈ P[L(G)], where s ∈ E∗

o , eo ∈ Eo,
∃sI ∈ E∗

o s.t. fI (s, eo) = sIeo.

Since no behavior in P[L(G)] would be excluded by admissible
insertion functions, the subset relationship is preserved under
admissible insertion functions. Hence, the following proposition
holds.

Proposition 1. Consider insertion function fI that is admissible with
respect to P[L(G)]. If L1 ⊆ L2 ⊆ P[L(G)], then f strI (L1) ⊆ f strI (L2).

2 A trusted observer possibly could do so, using some predeterminedmechanism
known only to the system and trusted observer.
3 This requirement is consistent with our prior work (Wu & Lafortune, 2015),

although it is not explicitly stated there.
4 Private enforceability was termed ‘‘i-enforceability’’ and private safety was

simply termed ‘‘safety’’ in Wu and Lafortune (2014).We adopt the new terminology
in order to distinguish the private and the public cases.

372 Y. Ji et al. / Automatica 93 (2018) 369–378

Fig. 2. Current-state estimator E ; states 7 and 8 contain only secret states.

Private safety is an output property of insertion functions.
We term this property ‘‘private’’ safety because it is under the
assumption that the intruder has no knowledge of the insertion
function at the outset. Consequently, the intruder is expecting to
observe behaviors that are consistent with the system’s transition
structure. Notice thatwe consider insertion functions that are used
to enforce opacity online. Hence, every modified output behav-
ior from the insertion function should always be consistent with
an original non-secret behavior from the system. Because of this
‘‘always’’ requirement, every modified output behavior should be
observationally equivalent to a string in the safe language Lsafe,
which is the supremal prefix-closed sublanguage of P(LNS) and is
calculated by the equation:

Lsafe = P[L(G)] \ {P[L(G)] \ P(LNS)}E∗

o .

This equation is an application of a result in Kumar andGarg (2012)
and a similar expressionwas also proposed in Dubreil et al. (2010).
Hereafter, we call a string s ∈ P[L(G)] safe if it is in Lsafe and unsafe
otherwise, so Lunsafe = P[L(G)] \ Lsafe. From the definition of safe
language, if a string is unsafe, then all its continuations are unsafe.

Definition 3 (Private Safety). Consider G with P , LS and LNS . An
insertion function fI is privately safe if ∀s ∈ P[L(G)], f strI (s) ∈ Lsafe;
equivalently, f strI (P[L(G)]) ⊆ Lsafe.

When an insertion function is both admissible and privately
safe, we say that it is privately enforcing.

3.3. Private-and-public enforceability

Privately enforcing insertion functions enforce opacity by in-
suring that the intruder never observes an unsafe string. A naive
intruder, with no knowledge of the insertion function at the outset,
would therefore never be certain about the secret being revealed;
in fact, the intruder would have no reason to suspect the existence
of an insertion function. However, a privately enforcing insertion
functionmay fail if it becomes known to the intruder, as illustrated
by the following example.

Example 1. Consider the current-state estimator in Fig. 2. These es-
timator states represent sets of system states; they are numbered
from 0 to 8 for simplicity. Assume that states 7 and 8 contain only
secret states; i.e., these estimator states reveal the secret. Suppose
that opacity is enforced by the privately enforcing insertion func-
tion where f strI (b) = ab, f strI (a) = da and no other insertions are
made. If the intruder has no knowledge of fI , then it would never
conclude that the secret is revealed, as the output from fI is always
safe; here, Lsafe = {dabc, ab}. However, if the intruder knows the
implementation of fI , then it would be able to conclude that the
state estimate is state 8 when it observes ab. This is because if ab
were the genuine output behavior from the system, then it would
have been modified to dab; and the intruder knows that. Hence,
the only system output that would produce ab is string b.

Example 1 shows how an intruder can infer the secret if it
knows the implementation of the insertion function. Indeed, there
are ways for intruders to learn the implementation of the insertion
function. For example, the intruder could use learning algorithms,
such as in Angluin (1987), to learn the modified system G̃, which
is the parallel composition of G with insertion automaton IA,5
and then use G̃ and G to reverse engineer IA. Alternatively, if
the intruder knows the optimality criteria used by the system’s
designer, it could follow certain synthesis algorithm and construct
the correct insertion function. In either case, we wish to use an
insertion function that still enforces opacity when its implemen-
tation becomes known. In this manner, the system designers may
be able to eventually reveal the structure of fI , if so desired.

PP-enforceability is a specification that we characterize under
the assumptions that: (i) the intruder does not know about the
implementation of the insertion function at the outset; but (ii) the
intruder can possibly learn or be told the correct implementation.
Consequently, to enforce opacity under assumption (i), insertion
functions should be privately safe. Also, under assumption (ii),
insertion functions should be defined so that the intruder is still
not able to determine the occurrence of the secret even if it
knows about the insertion function’s implementation. The second
requirement is formally characterized as a property called public
safety, defined as follows.

Definition 4 (Public Safety). Consider G with P , LS and LNS . An
insertion function fI is publicly safe if ∀s̃ ∈ f strI (P[L(G)]), ∃t ∈

Lsafe s.t. f strI (t) = s̃; equivalently, f strI (P[L(G)]) ⊆ f strI (Lsafe).

In contrast to Definition 4 in Wu and Lafortune (2015), we
use Lsafe instead of P(LNS) in the above definition to better capture
the on-line operation of the system, where public safety must be
preserved for every prefix of a safe string. The idea behind public
safety is that no matter what the insertion function outputs, this
output could have been obtained from a safe string; hence opacity
holds.

When an insertion function is admissible and publicly safe, we
say that it is publicly enforcing. Moreover, we say that an insertion
function satisfies the property of private-and-public enforceability,
or PP-enforceability, if it is admissible, privately safe, and publicly
safe.

Definition 5 (PP-Enforceability). Insertion function fI is PP-
enforcing if it is admissible, privately safe, and publicly safe.

Example 2. In Example 1, insertion function fI is privately en-
forcing but not PP-enforcing. Specifically, for s̃ = ab, there is no
t ∈ Lsafe for which f strI [P(t)] = ab. Let us define another insertion
function: f ′

I (ϵ, a) = da, f ′

I (ϵ, b) = dab, and f ′

I (s, eo) = eo, ∀seo ∈

P[L(G)] \ {a, b}. One can verify that f ′

I is PP-enforcing. Specifically,
f ′

I is admissible because it is defined for every P[L(G)]; it is privately
safe as f ′

I (P[L(G)]) = {dabc} ⊆ Lsafe; also, f ′

I is publicly safe since
for every s̃ ∈ {dabc}, there exists t ∈ Lsafe that is observationally
equivalent and is unmodified by f ′

I , which is sufficient to ensure
the condition in Definition 4.

It may be tempting to think that a publicly enforcing insertion
function should also be privately enforcing, as if we deprive the
intruder from the knowledge of the insertion function, it should
make its inference task harder. However, this is not true in general,
as shown in the following example.

5 This type of parallel composition of a regular automaton with an I/O one is
sometimes called ‘‘input parallel composition’’; we refer the reader to Wu and
Lafortune (2014) for its formal definition.

Y. Ji et al. / Automatica 93 (2018) 369–378 373

Example 3. Consider the current-state estimator with strings
{ab, b}, where string ab is secret. Consider the insertion function fI :
fI (ϵ, b) = ab and fI (s, eo) = eo, ∀seo ∈ {ab}. This insertion function
is publicly enforcing since it is admissible and the only unsafe
behavior ab is now observationally equivalent to safe behavior b.
However, if the intruder does not know the implementation of fI ,
it would always believe that the secret has occurred. Hence, the
secret will be revealed when the system indeed outputs ab.

The issue in the preceding example is that a publicly safe in-
sertion function is free to map strings to anything, as long as the
condition in Definition 4 holds. It is not required that the output
string be safe. This explains our choice of using PP-enforceability
as our specification for insertion functions. We do not wish to
make any assumptions about the intruder’s knowledge, either at
the outset or as it keeps observing the system. Thus, insertion
functions should enforce opacity regardless of what the intruder
knows about the implementation of insertion function, including
nothing. Hence, by also requiring private safety, PP-enforceability
ensures that only safe strings will be output.

Our goal is to develop a synthesis algorithm for PP-enforcing
insertion functions. For this purpose, we use the discrete structure
called ‘‘All Insertion Structure’’.

4. All insertion structure and analysis

We originally developed in Wu and Lafortune (2014) a proce-
dure to synthesize privately enforcing insertion functions based on
a special discrete structure called the All Insertion Structure (AIS). In
this section, we start by reviewing the process of building the AIS,
but following the procedure in Wu and Lafortune (2016), which is
more efficient than the one in Wu and Lafortune (2014, 2015).

4.1. Construction of the AIS

The review of the construction procedure of the AIS herein is
necessary in order to explain howwe employ this structure for the
purposes of this paper and also to define relevant notations. The
AIS is a game-like bipartite structure between the system and the
insertion function, with so-called Y states and Z states. When the
system plays, it outputs an observable event e0 that is defined at
the current Y -state y of the AIS, and it leads to a Z-state z = (y, e0)
in the AIS. On the other hand, when the insertion function plays,
certain insertion decisions are made at Z-state z corresponding to
strings that can be inserted before the last observed event e0. As
shown in Wuand Lafortune (2014), the AIS embeds in its transition
structure all privately enforcing insertion functions.

There are three steps in the construction of the AIS: (1) building
the i-verifier; (2) building the unfolded verifier; (3) obtaining the
AIS. We start by describing step (1). First, we build the desired
estimator E d by deleting all the secret states from the original
estimator E and taking the accessible part. As was mentioned
earlier, E = (M, Eo, δ,mo) is the standard observer automaton of G
withM ⊆ 2X . Therefore, by construction, E d generates exactly the
safe language Lsafe. We define the resulting sub-automaton of E as
E d

= (Md, Eo, δd,mo).
Next, we build the feasible estimator E f , which includes all

possible insertions: we insert a self-loop at each state for each
observable event, unless that self-loop is already defined in E . We
will use the new transition function δsl to denote those inserted
self-loop transitions, and only those, in E f . Therefore, we obtain
E f

= (M, Eo, δ, δsl,mo). Hereafter, we wish to distinguish between
two sets of transitions, normal and inserted ones, in E f ; this is why
we use two transition functions in its definition.

Finally, we synchronize E d and E f by a special type of paral-
lel composition called verifier parallel composition, resulting in a
new automaton called the verifier. All possible insertion functions

are included in this automaton. The verifier parallel composition
is denoted by ∥v . It is a synchronization between two kinds of
automata, one with only ‘‘normal’’ transitions and the other with
both ‘‘normal’’ and ‘‘inserted’’ self-loop transitions. Since we wish
to again distinguish between these two sets of transitions, we use
two transition functions in the definition of the i-verifier V , as was
done above in E f .

Definition 6 (Verifier Parallel Composition ∥v). The verifier parallel
composition is a special kind of parallel composition between
automata E d and E f . Two kinds of transition functions, δvs : (Md ×

M) × Eo → (Md × M) and δvd : (Md × M) × Eo → (Md × M), are
defined for synchronization:

V := (Mv, Eo, δvd, δvs,mv0) = E d
∥vE f

=

Ac(Md × M, E0, δvd, δvs, (m0,m0))

where the transition functions are defined as

δvs((md,mf), e) := (δd(md, e), δ(mf , e))
δvd((md,mf), e) := (δd(md, e), δsl(mf , e)) = (δd(md, e),mf).

The first equation corresponds to a normal transition labeled by e
in both E d and E f ; the second equation corresponds to a normal
transition labeled by e in E d and an inserted self-loop transition
labeled by e in E f .

Hereafter, we assume that the two transition functions δvs and
δvd are extended to strings of events in Eo.

In step (2) of the AIS construction, we ‘‘unfold’’ all deterministic
insertion decisions from the i-verifier resulting in a game structure
between the ‘‘systemplayer’’G and the ‘‘insertion function player’’;
we call this structure theunfolded verifier. This unfolding procedure
is given in Algorithm 1 in Wu and Lafortune (2016). The essence
of the construction is to: (i) include all possible system plays,
i.e., newly-generated observable events, at a given Y -state, and
(ii) include all insertions that are possible before that observable
event at a given Z-state, based on existing paths of inserted transi-
tions in the i-verifier.

In order to synthesize admissible insertion functions, in step
(3) of the AIS construction, we follow Algorithm 2 in Wu and
Lafortune (2016) to prune away all the inadmissible insertion
decisions (i.e., those that lead to deadlock at Z-states, since the
insertion function should always play) from the unfolded i-verifier
and call the final bipartite structure the AIS. This iterative pruning
and associated trimming is described in Algorithm 2 in Wu and
Lafortune (2016). As explained in Wu and Lafortune (2016), it can
be interpreted as a supremal controllable sublanguage calculation.
Notice that theremaybemultiple paths of inserted events between
two states mv and m′

v in V and this is captured by the function
Ins(mv,m′

v) = {sI ∈ E∗
o : δvd(mv, sI) = m′

v} in section IV. A of Wu
and Lafortune (2016). (In contrast with Wu & Lafortune, 2016, we
do not use the notation Ei in this paper since it is the same as Eo.)
Notice that Ins(mv,m′

v) may be an infinite set if there is a cycle of
inserted events in the path from mv to m′

v . In this paper, we make
the assumption that such cycles are redundant (from the viewpoint
of event insertion) and extract only the finite set of cycle-free paths
frommv to m′

v , i.e., cycles of inserted events are replaced by ϵ.
The function Ins is used in line 5 of Algorithm 2 in Wu and

Lafortune (2016) to label transitions from Z-states to Y -states in
the AIS as sets of admissible strings that can be inserted when
such transitions are taken. For the sake of simplicity of notation,
we denote hereafter these sets by L(z, y) for a given transition
between state z and state y. It can be shown from the construction
of V and of the AIS that any two L(z, yi) and L(z, yj) are disjoint
for any two distinct successors yi and yj of z. Moreover, these sets
are all finite since cycles of inserted events have been removed as
mentioned above. As defined, the AIS does not pre-specify which

374 Y. Ji et al. / Automatica 93 (2018) 369–378

string in an L(z, y) set is to be selected and thus all the possible
insertion choices are encoded in it. The reader is referred to Wu
and Lafortune (2014, 2016) for further details. As shown in Wu
and Lafortune (2014), opacity is privately enforceable if and only if
the AIS is not empty.

For the sake of completeness, we formally define this bipartite
transition system. Let I = Md ×M denote the set of all information
states.

Definition 7 (All Insertion Structure). The All Insertion Structure
w.r.t. current-state estimator E is the tuple: AIS = (Y , Z, Eo, 2E∗

o ,
fAIS,yz, fAIS,zy, Γ , y0), where

• Eo ⊆ E is the set of observable events.
• Y ⊆ I is the set of Y -states.
• Z ⊆ I × E0 is the set of Z-states. Let I(z) denote the

information state component in Z; then z = (I(z), e) for some
e ∈ Eo.

• fAIS,yz : Y × E0 → Z is the transition function from Y -states
to Z-states.

• fAIS,zy : Z × 2E∗
o → Y is the transition function from Z states

to Y states.
• Γ : Z → 2E∗

o is the set of insertion choices at Z states defined
as follows: Γ (z) =

⋃
{L(z, y) : fAIS,zy(z, L(z, y)) is defined }

• y0 ⊆ Y is the initial Y state where y0 = (m0,m0) and m0 is
the initial state of E .

Example 4. Here we show an example to illustrate the whole
construction process of the AIS. The current state estimator E is the
same as in Example 1 and is shown in Fig. 2. In this example, states
7 and 8 are secret states, so we delete them as well as transitions
leading to them and then obtain the desired estimator E d in Fig. 3.
Next, we add self-loops for events {a, b, c, d} at each state of E

and obtain the feasible estimator E f in Fig. 4. After that, we do the
verifier parallel composition between E d and E f and obtain verifier
V in Fig. 5. Notice that dashed transitions that are not followed by
any solid transition are not shown in the figure. Those transitions
do not indicate valid insertions and play no role in building the
unfolded verifier. By the insertion mechanism, events are inserted
before the occurrence of the next observable event, thus every δvd
transition should be followed by a δvs transition somewhere in the
verifier. Thenwe construct the unfolded verifier in Fig. 6,where the
rectangular states are Y states and the oval states are Z states. As is
seen in the figure, Z state ((6, 6), c) is a deadlock state and should
be pruned away in the next step of building the AIS. Following
Algorithm 2 in Wu and Lafortune (2016), the shaded path in Vu is
pruned away. Finally, we obtain the AIS in Fig. 7.6 The game starts
at the initial Y-state (0, 0) where the system plays; initially the
system can output a, b, or d. If the system outputs b, the game then
reaches Z-state ((0, 0), b), where the insertion function plays. The
transition a between states ((0, 0), b) and (6, 8) stands for insertion
of event a and all the other transitions from Z states to Y states can
be interpreted similarly. The insertion function can choose to insert
a or da, leading the system to state (6, 8) or (3, 8), respectively.

4.2. Analysis of AIS

In the AIS, the insertion function works as follows: it observes
some events and then makes a decision to insert a specific string
before the observed event. This process continues as long as the
system generates new observations. In order to better characterize
this fact, we define the notion of run in the AIS:

6 For simplicity, since all sets labeling transitions from Z-states to Y -states in
this example are singletons, ‘‘{’’ and ‘‘}’’have been omitted in these labels. The same
comment applies to later figures.

Fig. 3. Desired estimator E d .

Fig. 4. Feasible estimator E f .

Fig. 5. Verifier V without dangling δvd transitions.

Definition 8 (Run). A run ω in the AIS is a sequence of alternating
states, observable events and insertion decisions.

ω = ⟨y0
e0
−→ z0

s0
−→ y1

e1
−→ · · · yn−1

en−1
−−→ zn−1

sn−1
−−→ yn⟩

where n ∈ N, y0 is the initial state of the AIS, ei ∈ Eo, si ∈ E∗
o , s.t.,

fAIS,yz(yi, ei) = zi, si ∈ L(zi, yi+1) where fAIS,zy(zi, L(zi, yi+1)) = yi+1,
∀i, 0 ≤ i < n. The set of runs is denoted by Ω .

In the definition of run, the insertion choice is determined at
each Z state, so we explicitly use an insertion string from the set of
strings labeling a transition out of the Z-state. The length n of a run
can be arbitrarily long. We require that a run of finite length could
only end at Y -states, since these are the only possible terminating
states in the AIS and this structure embeds only admissible inser-
tion functions. A Y -state y is terminating if fAIS,yz(y, eo) is undefined
for all eo ∈ Eo.

If we erase all the states from a run and swap every consecutive
ei and si pair, then by construction of the AIS, we get a string
generated by a run.

Definition 9 (String Generated by a Run). The string generated
by run ω ∈ Ω is defined as: S(ω) = s0e0s1e1 . . . sn−1en−1, given
ω = ⟨y0

e0
−→ z0

s0
−→ y1

e1
−→ · · · yn−1

en−1
−−→ zn−1

sn−1
−−→ yn⟩.

From the definition of safe language, we observe that some safe
strings are prefixes of unsafe strings while others are not. Based on
this observation, the safe language is partitioned as follows:

Definition 10 (Partition of Safe Language). Safe language Lsafe is
partitioned as:

Y. Ji et al. / Automatica 93 (2018) 369–378 375

Fig. 6. Unfolded verifier Vu .

Fig. 7. AIS in Example 4.

(1) L1safe = L̃safe where L̃safe = {s ∈ Lsafe : ∄u ∈ Lunsafe, s.t., s < u}.
(2) L2safe = Lsafe \ L1safe.

Clearly, it is a partition of the safe language. Also L1safe is prefix-
closed by definition but L2safe may not be prefix-closed. For strings
in L1safe, we can choose not to insert in the AIS since they are
already safe and we could also choose to insert as long as the
insertion is feasible in the AIS. However, for strings in L2safe, we
have to insert somewhere to obtain a string in L1safe, otherwise
the secret states would be ultimately reached and private opacity
would be violated. We already know that Lsafe ̸= ∅ if private safety
is enforceable. Furthermore, the following proposition shows the
non-emptiness of L1safe when private safety is enforceable.

Proposition 2. L1safe ̸= ∅ if private safety is enforceable.

Proof. Proof by contradiction. If L1safe = ∅, then ∀s ∈ P[L(G)],
∃u ∈ Lusafe, s.t. s < u. Since all the continuations of unsafe strings
are also unsafe, we can never map an unsafe string to a string in
L1safe. Then there always exists a string u′

∈ Lunsafe, such that no
matter what the privately safe insertion function fI is and what it
inserts, fI (u′) ∈ Lunsafe, which violates private enforceability.

5. PP-enforcing insertion functions

Our goal is to exploit the AIS to synthesize PP-enforcing in-
sertion functions. In that regard, we establish a necessary and
sufficient condition for the existence of PP-enforcing insertion
functions. We will proceed in two steps, first establishing prelim-
inary results in Section 5.1 before presenting the main necessary
and sufficient condition in Section 5.2.

5.1. A sufficient condition for PP-enforcing insertion functions

Based on the definitions, a privately safe fI maps all strings in
P[L(G)] to a subset of Lsafe. However, in general, f strI [P(LS)] may not
be a subset of f strI (Lsafe). In this case, the intruder, when knowing
the implementation of fI , could determine the occurrence of the
secret when it observes strings in f strI [P(LS)] \ f strI (Lsafe). If, on the
other hand, f strI [P(LS)] is contained in f strI (Lsafe), then f strI (P[L(G)]) =

f strI (Lsafe) and thus fI is PP-enforcing. A special casewhere f strI [P(LS)]
is guaranteed to be contained in f strI (Lsafe) is when f strI (Lsafe) is the
entire set Lsafe. Based on this special case, Lemma 1 and Theo-
rem 1 show sufficient conditions for a privately enforcing fI to be
PP-enforcing.

Lemma 1. Consider privately enforcing insertion function fI . If f strI
(Lsafe) = Lsafe, then fI is also publicly enforcing; that is, fI is
PP-enforcing.

Proof. Because a privately enforcing insertion function fI is ad-
missible, we can prove this lemma using the definition of PP-
enforceability. We will show that if f strI (Lsafe) = Lsafe, then the
definition is satisfied. First, fI is admissible and privately safe from
the statement. We then show fI is also publicly safe to complete
the proof: if f strI (Lsafe) = Lsafe, then f strI (P[L(G)]) ⊆ Lsafe = f strI (Lsafe).
So fI is PP-enforcing.

We now replace Lsafe with a subset L ⊆ Lsafe and follow the argu-
ment in the proof of Lemma 1 to derive a more general condition
in Theorem 1 (proof omitted since similar to that of Lemma 1).

Theorem1. Consider privately enforcing insertion function fI , if there
is L ⊆ Lsafe such that f strI (P[L(G)]) = L and f strI (L) = L, then fI is also
publicly enforcing; i.e., fI is PP-enforcing.

The condition in Theorem 1 is sufficient and the following
example shows a case when the theorem does not hold. Thus it
remains to be seen whether a PP-enforcing insertion function can
always be synthesized from the AIS.

Example 5. Consider system G with observable event set Eo =

{a, b, c, d} and observable language P[L(G)] = {dabc, abc, bc, c},
where Lsafe = {dabc, abc, c}. Define fI so that fI (ϵ, a) = da, fI (ϵ, b)
= ab, fI (ϵ, c) = abc and fI (s, eo) = eo otherwise. Because
f strI [L(G)] = {abc, dabc} ⊆ Lsafe, fI is privately enforcing. One
can also check that fI is publicly enforcing. However, the only set
L ⊆ Lsafe satisfying f strI (L) = L is {dabc}, which is not equal to
f strI [L(G)] = {abc, dabc}. Hence, fI is a PP-enforcing insertion func-
tion such that no L ⊆ Lsafe satisfies f strI [L(G)] = L and f strI (L) = L.

376 Y. Ji et al. / Automatica 93 (2018) 369–378

5.2. Greedy PP-enforcing insertion functions

In this section, we introduce the notion of a greedy-maximal
PP-enforcing insertion function and then leverage the results in
Section 4.2 together with Theorem 1.

First, we partition the set of Z states in the AIS into three
subsets: (i) Z1, defined as the Z states where the only insertion
defined is ϵ; (ii) Z2, defined as the Z states where both ϵ and non-ϵ
transitions are defined; (iii) Z3, defined as the remaining Z states,
where no ϵ transitions are defined. If we track the runs generating
L1safe, all the Z states should belong to Z1 or Z2, while for the runs
generating L2safe and Lunsafe, they should contain some Z3 states.

Definition 11 (Greedy-Maximal Criterion).

(1) At any z ∈ Z1 ∪ Z2 in the AIS, choose ϵ insertion.
(2) At any z ∈ Z3 in the AIS, choose for insertion choice any string

smax ∈ argmax[|si|, si ∈ Γ (z)] where |·| denotes the length
of the string.

Any insertion function that satisfies the greedy-maximal cri-
terion at every Z-state that it visits in the AIS is called a greedy-
maximal insertion function, denoted as fgreedy. By this criterion,
fgreedy(L1safe) = L1safe since ϵ is chosen at every Z state. Moreover,
fgreedy(L2safe ∪ Lunsafe) ⊆ L1safe, a fact established below in the proof of
Theorem 2. In order to prove that theorem, we first give definition
of a particular projection Pe.

Definition 12 (Projection Pe). Given a run ω = ⟨y0
e0
−→ z0

s0
−→ y1

e1
−→

· · · yn−1
en−1
−−→ zn

sn−1
−−→ yn⟩ where y0 is the initial state of the AIS,

the edit projection Pe returns the string Pe(ω) = s = e0e1 . . . en−1.

Intuitively speaking, this projection just erases all the insertion
choices from a run, and recovers the original string corresponding
to the run. We can now state one of the main results in this paper.

Theorem 2. A greedy-maximal insertion function is PP-enforcing.

Proof. Consider greedy-maximal insertion function fgreedy. First, by
Proposition 2, L1safe ̸= ∅. We also know that ∀s ∈ L1safe, fgreedy(s) = s,
i.e., fgreedy(L1safe) = L1safe by our greedy criterion.

Next, we show that fgreedy(L2safe∪Lunsafe) ⊆ L1safe. ∀s ∈ L2safe∪Lunsafe,
let fgreedy(s) = s′, where we know that ∃ω ∈ Ω s.t., Pe(ω) = s
and S(ω) = s′. Then we claim that ∃ω′

∈ Ω , s.t., (Pe(ω′) = s′) ∧

(fgreedy(s′) = s′), which we prove by contradiction. We know that
actually (fgreedy(s′) = s′) ⇒ (Pe(ω′) = s′), and we focus on showing
fgreedy(s′) = s′. Suppose this is not the case, then fgreedy(s′) = s′′ ̸= s′
and S(ω′) ̸= s′. So ∃z ∈ Z3 in ω′ where only non-ϵ insertion is
feasible. However, the AIS embeds all admissible insertion choices
and this implies fgreedy does not choose a longest insertion choice
at certain z ∈ Z3 in ω, which leaves the possibility for non-ϵ
insertion in ω′. This contradicts with the insertion mechanism of
fgreedy. Therefore, ∀z ∈ ω′, z ∈ Z1 ∪Z2, fgreedy(s′) = s′ ∈ L1safe, in other
words, fgreedy(L2safe ∪ Lunsafe) ⊆ L1safe. Overall, fgreedy(P[L(G)]) = L1safe
and this implies fgreedy and L1safe satisfy Theorem 1, thus fgreedy is
PP-enforcing.

This theorem demonstrates that as long as the AIS is not empty,
then there exists at least one greedy-maximal insertion function
that is also PP-enforcing. This leads to the following corollary.

Corollary 1. Opacity is PP-enforceable if and only if it is privately
enforceable.

Proof. The only if part is true since the definition of PP-
enforceability implies private enforceability.

For the if part, as long as the AIS is not empty, we could always
make insertion choices by this greedy criterion at every Z state and
get a PP-enforcing insertion function.

This result is a direct improvement of our preliminarywork (Wu
&Lafortune, 2015) in the sense that PP-enforcing insertion function
always exists as long as privately safe insertion function exists. Let
us revisit Example 5: it is clear that fI is not greedy-maximal since
fI (ϵ, c) ̸= dabc . If we set fI (ϵ, c) = dabc , then we obtain a greedy-
maximal insertion function that is PP-enforcing.

6. The INPRIVALIC-G Algorithm

In this section, we develop a new algorithm that synthesizes
a PP-enforcing insertion function by leveraging Theorem 2. We
first build the AIS, which embeds all privately enforcing insertion
functions. The strategy of the proposed algorithm is to identify L1safe
and modify all other strings to strings in L1safe by using the greedy-
maximal criterion. As a result, any insertion function synthesized
in that manner is guaranteed to be PP-enforcing by Theorem 2.

Because this algorithm synthesizes INsertion functions with
PRIVAte-and-pubLIC-enforceability property using Greedy-
maximal criterion, we call it the INPRIVALIC-G Algorithm.

Algorithm 1 INPRIVALIC-G ALGORITHM
Input: G = (X, E, f , X0), projection P , Xs ⊆ X
Output: A PP-enforcing IA
1: Build E , E d, E f

2: V = E d
∥vE f

3: Construct All Insertion Structure (AIS) by algorithms inWu and
Lafortune (2016)

4: Synthesize a greedy insertion function from AIS

Hereafter, we denote a greedy-maximal insertion function by
fgreedy. The INPRIVALIC-G Algorithm is not meant to synthesize any
PP-enforcing insertion function, but it is guaranteed to find one
(unless the AIS is empty).

We discuss the steps of the algorithm, as a way of summarizing
themethodology developed in this paper. Steps 1 to 3 construct the
AIS. These steps were already discussed earlier in Section 4.1 and
will not be repeated here. After that, step 4 synthesizes an insertion
automaton from the AIS using the greedy-maximal criterion. The
main idea is that at each Z-state in the AIS, a greedy-maximal
insertion choice is selected according to Definition 11 and this
process proceeds until: (1) a terminating Y is reached; or (2) a
previously visited Y state is visited again. It is implemented in
Algorithm 2, which builds the reachable part of the AIS for the
selections made, until a complete IA is obtained.

The following running example shows all the steps of the
INPRIVALIC-G Algorithm.

Example 6. Let automaton Gwith observable events Eo = {a, b, c,
d, e}have the state estimator shown in Fig. 8,where estimator state
7 reveals the secret. We use this example to illustrate all the steps
of the INPRIVALIC-G Algorithm. Following the algorithm, we build
the AIS and synthesize a PP-enforcing insertion function encoded
by an I/O automation.

In step 1, we build E d by removing state 7 and we obtain E f by
adding self-loops for a, b, c, d, e at each state.

In step 2, we perform the verifier parallel composition of E d and
E f and obtain V , which is not shown here.

In step 3, we unfold the insertions in V for every system output,
and build the game structure Vu. Since there is no inadmissible
insertion in Vu, no state will be pruned away and the AIS is im-
mediately obtained in Fig. 9. There are two types of states in the

Y. Ji et al. / Automatica 93 (2018) 369–378 377

Algorithm 2 Synthesize a greedy insertion function

Input: AIS = (Y , Z, Eo, 2E∗
o , fAIS,yz, fAIS,zy, Γ , y0)

Output: IA=(Xia, Eo, E+
o , fia, qia, xia,0)

1: xia,0 := yo, Xia := {xia,0}
2: for xia ∈ Xia that has not been examined do
3: for e ∈ Eo s.t. fAIS,yz(xia, e) is defined and where z =

fAIS,yz(xia, e) = (xia, e) do
4: if ϵ ∈ Γ (z) then
5: x′

ia := fAIS,zy(z, L(z, x′

ia)) where ϵ ∈ L(z, x′

ia)
6: fia(xia, e) = x′

ia
7: qia(xia, e) = e
8: else
9: pick one smax ∈ argmax[|si|, si ∈ Γ (z)]

10: x′

ia := fAIS,zy(z, L(z, x′

ia)) where smax ∈ L(z, x′

ia)
11: fia(xia, e) = x′

ia
12: qia(xia, e) = smaxe
13: end if
14: Xia := Xia ∪ {x′

ia}

15: end for
16: end for
17: return IA

Fig. 8. E with secret-revealing state 7.

Fig. 9. All insertion structure with greedy-maximal criterion. (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

AIS: square states where the system plays and round states where
the insertion function plays.

With the AIS built, we proceed to the synthesis part. By the
greedy-maximal criterion, at state ((0, 0), a), ed should be inserted
and at state ((3, 7), c), ϵ should be inserted. Similarly for the
other Z-states: we insert ϵ if it is defined. In Fig. 9 we use bold
red lines to indicate the greedy-maximal criterion in the AIS. Fi-
nally, the insertion automaton in Fig. 10 encodes the constructed
PP-enforcing insertion function.

We conclude with a brief discussion of the computational com-
plexity of the INPRIVALIC-G Algorithm. Consider a system with
estimator E ; as shown in Wu and Lafortune (2014), the AIS has at

Fig. 10. A PP-enforcing insertion function encoded as an I/O automaton.

most (|Eo|+1)|XE |
2 states, where |XE | is the number of states in E .

The time complexity for building the AIS is of O(|XE |
6) according

to Wuand Lafortune (2016). Finally, the greedy-maximal synthesis
step is done by performing a breadth-first search on the AIS, which
requires time complexity linear in its size. In all, the computa-
tional complexity of the INPRIVALIC-G Algorithm is therefore of
O(|XE |

6). In the worst case, |XE | may be 2|X | and the complexity
is exponential in terms of |X |. We refer the reader to Wu and
Lafortune (2014) for numerical tests on the construction of the
AIS using an explicit representation, and to Wu et al. (2017) for
a symbolic implementation of the AIS construction using binary
decision diagrams, which achieves greater scalability.

Remark 1. The INPRIVALIC-G Algorithm is sound and complete,
unlike the INPRIVALIC Algorithm in Wu and Lafortune (2015),
which was provably sound only.

7. Conclusion

This paper extends prior works on opacity enforcement by
insertion functions to the case where the insertion function may
become known to the intruder. To handle this situation, we de-
fined the notion of public–private (PP) opacity and investigated
its enforcement by so-called PP-enforcing insertion functions. We
showed that while not all insertion functions that are privately-
enforcingmay be PP-enforcing, if private safety is enforceable, then
so is public–private safety. In this regard, we identified a necessary
and sufficient condition for PP-enforceability and then developed
an algorithmic procedure for synthesizing insertion functions that
are provably PP-enforcing. This algorithm (INPRIVALIC-G) is based
on a greedy-maximal insertion mechanism.

This work opens several avenues for future investigations. First,
it would be of interest to extend the results herein to the case of
edit functions, a generalized form of insertion functions. Second, it
would be worthwhile to identify other synthesis strategies than
the greedy-maximal one of Algorithm INPRIVALIC-G to synthesize
PP-enforcing insertion functions. Finally, it would be of interest
to study instances where the intruder has partial knowledge of
the insertion function, as opposed to the full-knowledge or no-
knowledge scenarios considered in this work.

References

Angluin, D. (1987). Learning regular sets from queries and counterexamples.
Information and Computation, 75(2), 87–106.

Bérard, B., Chatterjee, K., & Sznajder, N. (2015). Probabilistic opacity for Markov
decision processes. Information Processing Letters, 115(1), 52–59.

Bérard, B., Mullins, J., & Sassolas, M. (2015). Quantifying opacity. Mathematical
Structures in Computer Science, 25(Special issue 2), 361–403.

Bryans, J. W., Koutny, M., & Ryan, P. Y. A. (2005). Modelling opacity using Petri nets.
Electronic Notes in Theoretical Computer Science, 121, 101–115.

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems –2nd
Edition. Springer.

Cassez, F., Dubreil, J., &Marchand, H. (2012). Synthesis of opaque systemswith static
and dynamic masks. Formal Methods in System Design, 40(1), 88–115.

http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb1
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb2
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb3
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb4
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb5
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb6

378 Y. Ji et al. / Automatica 93 (2018) 369–378

Chédor, S., Morvan, C., Pinchinat, S., & Marchand, H. (2015). Diagnosis and opacity
problems for infinite state systems modeled by recursive tile systems. Discrete
Event Dynamic Systems: Theory and Applications, 25(1–2), 271–294.

Chen, J., Ibrahim, M., & Kumar, R. (2017). Quantification of secrecy in partially
observed stochastic discrete event systems. IEEE Transactions on Automation
Science and Engineering , 14(1), 185–195.

Darondeau, P., Marchand, H., & Ricker, L. (2015). Enforcing opacity of regular
predicates onmodal transition systems. Discrete Event Dynamic Systems: Theory
and Applications, 25(1–2), 251–270.

Dubreil, J., Darondeau, P., & Marchand, H. (2010). Supervisory control for opacity.
IEEE Transactions on Automatic Control, 55(5), 1089–1100.

Jacob, R., Lesage, J.-J., & Faure, J.-M. (2016). Overview of discrete event systems
opacity: models, validation, and quantification. Annual Reviews in Control, 41,
135–146.

Ji, Y., & Lafortune, S. (2017). Enforcing opacity by publicly known edit functions. In
Proceedings of the 56th IEEE conference on decision and control (pp. 4866–4871).

Ji, Y., Yin, X., & Lafortune, S. (2018). Opacity enforcement by insertion functions
under energy constraints. In Proceedings of the 14th IFAC international workshop
on discrete event systems.

Keroglou, C., & Hadjicostis, C. N. (2013). Initial state opacity in stochastic DES.
In Proceedings of the 18th IEEE conference on emerging technologies & factory
automation (pp. 1–8).

Kumar, R., & Garg, V. K. (2012).Modeling and control of logical discrete event systems,
Vol. 300. Springer Science & Business Media.

Lin, F. (2011). Opacity of discrete event systems and its applications. Automatica,
47(3), 496–503.

Mazaré, L. (2004). Using unification for opacity properties. Proceedings of the 4th IFIP
WG1, 7, 165–176.

Mullins, J., & Yeddes, M. (2014). Opacity with orwellian observers and intransitive
non-interference. IFAC Proceedings Volumes, 47(2), 344–349.

Saboori, A., & Hadjicostis, C. N. (2012a). Opacity-enforcing supervisory strategies
via state estimator constructions. IEEE Transactions on Automatic Control, 57(5),
1155–1165.

Saboori, A., & Hadjicostis, C. N. (2012b). Verification of infinite-step opacity and
complexity considerations. IEEE Transactions on Automatic Control, 57(5), 1265–
1269.

Saboori, A., & Hadjicostis, C. N. (2013). Verification of initial-state opacity in security
applications of discrete event systems. Information Sciences, 246, 115–132.

Saboori, A., & Hadjicostis, C. N. (2014). Current-state opacity formulations in proba-
bilistic finite automata. IEEE Transactions on Automatic Control, 59(1), 120–133.

Takai, S., & Oka, Y. (2008). A formula for the supremal controllable and opaque
sublanguage arising in supervisory control. SICE Journal of Control, Measurement,
and System Integration, 1(4), 307–311.

Tong, Y., Li, Z., Seatzu, C., & Giua, A. (2017a). Current-state opacity enforcement
in discrete event systems under incomparable observations. Discrete Event
Dynamic Systems: Theory and Applications, 1–22.

Tong, Y., Li, Z., Seatzu, C., & Giua, A. (2017b). Verification of state-based opacity using
Petri nets. IEEE Transactions on Automatic Control, 62(6), 2823–2837.

Wu, Y.-C., & Lafortune, S. (2013). Comparative analysis of related notions of opacity
in centralized and coordinated architectures. Discrete Event Dynamic Systems:
Theory and Applications, 23(3), 307–339.

Wu, Y.-C., & Lafortune, S. (2014). Synthesis of insertion functions for enforcement
of opacity security properties. Automatica, 50(5), 1336–1348.

Wu, Y.-C., & Lafortune, S. (2015). Synthesis of opacity-enforcing insertion functions
that can be publicly known. In Proceedings of the 54th IEEE conference on decision
and control (pp. 3506–3513).

Wu, Y.-C., & Lafortune, S. (2016). Synthesis of optimal insertion functions for opacity
enforcement. IEEE Transactions on Automatic Control, 61(3), 571–584.

Wu, Y.-C., Raman, V., Rawlings, B. C., Lafortune, S., & Seshia, S. A. (2017). Synthesis
of obfuscation policies to ensure privacy and utility. Journal of Automated Rea-
soning .

Yin, X., & Lafortune, S. (2015). A general approach for solving dynamic sensor
activation problems for a class of properties. In Proceedings of the 54th IEEE
conference on decision and control (pp. 3610–3615).

Yin, X., & Lafortune, S. (2016). A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems. IEEE Trans-
actions on Automatic Control, 61(8), 2140–2154.

Yin, X., & Lafortune, S. (2017). A new approach for the verification of infinite-step
and K-step opacity using two-way observers. Automatica, 80, 162–171.

Yin, X., & Li, S. (2018). Synthesis of dynamic masks for infinite-step opacity. In
Proceedings of the 14th IFAC international workshop on discrete event systems.

Yin, X., Li, Z., Wang, W., & Li, S. (2017). Infinite-step opacity of stochastic discrete-
event systems. In Proceedings of the 11th Asian control conference (pp. 102–107).

Ylies, F., & Hervé, M. (2015). Enforcement and validation (at runtime) of various
notions of opacity. Discrete Event Dynamic Systems: Theory and Applications,
25(4), 531–570.

Zhang, B., Shu, S., & Lin, F. (2015). Maximum information release while ensuring
opacity in discrete event systems. IEEE Transactions on Automation Science and
Engineering , 12(3), 1067–1079.

Yiding Ji received the B.Eng. degree from Tianjin Uni-
versity, Tianjin, China in 2014, the M.S. degree from the
University of Michigan, Ann Arbor, USA in 2016, all in
electrical engineering. He is now a Ph.D. candidate in
the Department of Electrical Engineering and Computer
Science, the University of Michigan. His research interests
include supervisory control of discrete-event systems, se-
curity and secrecy in cyber-physical systems and formal
methods.

Yi-Chin Wu was a postdoctoral researcher at the Ter-
raSwarm Research Center and affiliated with the Univer-
sity of Michigan and the University of California, Berke-
ley, when this work was performed. She currently works
at Pure Storage Inc. She received her B.S. degree from
National Taiwan University, Taipei, Taiwan, in 2008, and
her Ph.D. degree from the University of Michigan, Ann
Arbor, in 2014, all in Electrical Engineering. Her research
interests include modeling, verification, and enforcement
of privacy properties in Discrete Event Systems, and their
applications to cyber and cyber-physical systems.

Stéphane Lafortune received the B.Eng. degree fromEcole
Polytechnique de Montréal in 1980, the M.Eng. degree
from McGill University in 1982, and the Ph.D. degree
from the University of California at Berkeley in 1986, all
in electrical engineering. Since September 1986, he has
been with the University of Michigan, Ann Arbor, where
he is a Professor of Electrical Engineering and Computer
Science. Lafortune is a Fellow of the IEEE (1999) and of
IFAC (2017). He received the Presidential Young Investiga-
tor Award from the National Science Foundation in 1990
and the George S. Axelby Outstanding Paper Award from

the Control Systems Society of the IEEE in 1994 (for a paper coauthored with
S.-L. Chung and F. Lin) and in 2001 (for a paper co-authored with G. Barrett).
Lafortune’s research interests are in discrete event systems and include multiple
problem domains: modeling, diagnosis, control, optimization, and applications to
computer and software systems. He co-authored, with C. Cassandras, the textbook
Introduction to Discrete Event Systems — Second Edition (Springer, 2008). Lafortune
is Editor-in-Chief of the Journal of Discrete Event Dynamic Systems: Theory and
Applications.

http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb7
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb8
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb9
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb10
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb11
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb15
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb16
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb17
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb18
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb19
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb20
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb21
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb22
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb23
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb24
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb25
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb26
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb27
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb29
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb30
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb32
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb33
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb36
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37
http://refhub.elsevier.com/S0005-1098(18)30128-6/sb37

	Enforcement of opacity by public and private insertion functions
	Introduction
	Opacity notions for automata models
	Insertion mechanism for opacity enforcement
	Insertion functions and insertion automata
	Private enforceability
	Private-and-public enforceability

	All insertion structure and analysis
	Construction of the AIS
	Analysis of AIS

	PP-enforcing insertion functions
	A sufficient condition for PP-enforcing insertion functions
	Greedy PP-enforcing insertion functions

	The INPRIVALIC-G Algorithm
	Conclusion
	References

