
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020 3349

Compositional and Abstraction-Based Approach
for Synthesis of Edit Functions for

Opacity Enforcement
Sahar Mohajerani , Yiding Ji , and Stéphane Lafortune , Fellow, IEEE

Abstract—This article develops a novel compositional
and abstraction-based approach to synthesize edit func-
tions for opacity enforcement in modular discrete event
systems. Edit functions alter the output of the system by
erasing or inserting events in order to obfuscate the out-
side intruder, whose goal is to infer the secrets of the sys-
tem from its observation. We synthesize edit functions to
solve the opacity enforcement problem in a modular set-
ting, which significantly reduces the computational com-
plexity compared with the monolithic approach. Two ab-
straction methods called opaque observation equivalence
and opaque bisimulation are first employed to abstract the
individual components of the modular system and their ob-
servers. Subsequently, we propose a method to transform
the synthesis of edit functions to the calculation of modular
supremal nonblocking supervisors. We show that the edit
functions synthesized in this manner correctly solve the
opacity enforcement problem.

Index Terms—Abstraction, edit function, finite-state
automata, modular systems, opacity.

I. INTRODUCTION

O PACITY characterizes whether the integrity of the secrets
of a system can be preserved from the inference of an out-

side intruder, potentially with malicious purposes. The intruder
is modeled as a passive observer with knowledge of the system’s
structure. A system is called opaque if the intruder is unable to
infer the system’s secrets from its observation.

Starting with [2] and [3] in the computer science literature,
opacity has been extensively studied, especially in the field of
discrete event systems (DESs), under multiple frameworks.

For finite state automaton models, various notions of opacity
have been studied, e.g., language-based opacity [22], current-
state opacity [34], initial-state opacity [36], K-step opacity [49],
and infinite-step opacity [33]. Opacity has also been discussed

Manuscript received January 29, 2019; revised May 30, 2019 and
July 29, 2019; accepted September 21, 2019. Date of publication Oc-
tober 8, 2019; date of current version July 28, 2020. The work of S.
Mohajerani was supported by the Swedish Research Council, 2016-
00529. The work of Y. Ji and S. Lafortune was supported in part by
the U.S. National Science Foundation under Grant CNS-1421122 and
Grant CNS-1738103. Recommended by Associate Editor C. Seatzu.
(Corresponding author: Sahar Mohajerani.)

The authors are with the Department of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Arbor,
MI 48109 USA (e-mail: mohajera@chalmers.se; jiyiding@umich.edu;
stephane@umich.edu).

Digital Object Identifier 10.1109/TAC.2019.2946165

in some other system models, like infinite state systems [6],
modular systems [24], and Petri nets [42], [43]. Opacity under a
special observer called Orwellian observer is discussed in [30],
and opacity under powerful attackers is studied in [14]. A more
recent work [51] investigates opacity for networked supervisory
control systems. Furthermore, some works investigate opacity
in stochastic settings, e.g., [1], [7], [21], [45]. Specifically,
Yin et al. [52] present a novel approach to tackle infinite-step
and K-step opacity in stochastic DES. The survey paper [16]
summarizes some recent results on opacity in DES.

When opacity does not hold, it is natural to study its enforce-
ment [10]. One popular approach is supervisory control [8], [9],
[35], [41], [48], where some behaviors of the system are disabled
before they reveal the secrets. Another widely applied method
is sensor activation [5], [50], [53], where the observability of
events is dynamically changed.

Recently, a new enforcement method called insertion function
has been proposed in [46], which inserts fictitious events into
the output of the system to obfuscate the intruder. The authors
of [18] extended the method to study opacity enforcement
under the assumption that the intruder may or may not know
the implementation of insertion functions, while Ji et al. [19]
discussed opacity enforcement by insertion functions under
quantitative constraints. As a following work, Wu et al. [47]
investigate a more general method called edit functions, which
manipulate the output of the system by either inserting or erasing
events. Then, Ji et al. [17], [20] consider the case when the
edit function’s implementation is known to the intruder. As
a summary and extension, Ji et al. [20] characterize opacity
enforcement by edit functions as a three-player game and pro-
poses a novel information structure called three-player observer
(TPO) to embed edit functions. A special TPO called the all edit
structure (AES) is also introduced in [20] to characterize the edit
constraints.

In this article, we elaborate the method in [20] to study opacity
enforcement in a modular setting. Our motivation is as follows.
To generate a TPO, the observer of the system needs to be calcu-
lated, which is potentially costly in computation. Furthermore,
modern engineering systems usually contain multiple compo-
nents that are synchronized and subject to malicious inference.
In this sense, if we are to apply edit functions to enforce opacity,
heavy computation is involved both from determining individual
systems and synchronizing them, which may be potentially
cumbersome.

0018-9286 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9933-8946
https://orcid.org/0000-0003-2678-7051
https://orcid.org/0000-0002-7526-6642
mailto:mohajera@chalmers.se
mailto:jiyiding@umich.edu
mailto:stephane@umich.edu

3350 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

To alleviate this issue, this article applies a compositional
and abstraction-based method to reduce the size of the modular
system before calculating the AES. Bisimulation and obser-
vation equivalence [25] are well-known methods to abstract
the state space of an automaton, while they do not preserve
opacity properties in general. As a variant, Zhang et al. [54]
propose several innovative concepts termed opacity-preserving
(bi)simulation relations to reduce the state space of the system
in opacity verification. A compositional visible bisimulation
equivalence method is discussed in [31] for abstraction-based
opacity verification.

For abstraction, we introduce opaque observation equiva-
lence and opaque bisimulation, which consider the secrecy status
of states when merging them. In our framework, each individual
system is abstracted using opaque observation equivalence. Af-
ter that, the observer is calculated. Since abstraction reduces
the size of the state space, the computational complexity of
calculating the observer is lowered potentially. Next, opaque
bisimulation is employed to the observer of each abstracted
individual system, resulting in the smallest possible automaton
for future discussion.

We further leverage some results from supervisor reduction
and modular supervisory control theory to reduce the complexity
of supervisor synthesis. There is a rich literature on both topics
(see, e.g., [23], [28], [37], [39], and [40]). The main idea is to
convert the construction of the monolithic AES to a modular
supervisory control problem. Specifically, we first transfer each
individual TPO (without considering edit constraints) to its
automaton form and view the set of interacting automata as
the “plant” to be controlled. Then, we put the edit constraint
as the specification, also in an automaton form. Afterward,
we perform modular supervisory control to synthesize a least
restrictive and nonblocking modular supervisor. It is shown that
all the traces accepted by the supervisor represent valid edit
decisions contained in the monolithic AES. Compared with the
conventional monolithic approach for supervisor synthesis [4],
our compositional approach is more efficient in computation.

The presentation of this article is organized as follows. Section
II gives a brief background introduction about the system model,
supervisory control theory, and edit functions. The general idea
of this article is presented in Section III as a flowchart. Section IV
explains the abstraction methods and synchronization of TPOs.
Next, Section V transforms the calculation of the monolithic
AES to the calculation of a modular supervisor. Finally, some
concluding remarks are given in Section VI.

A preliminary and partial version of this article appears
in [26]. The current article improves [26] in the sense that [26]
only considers abstraction methods to synthesize edit functions
in a monolithic setting, while this article also takes synchronous
composition into consideration, and the edit functions are syn-
thesized by a modular approach.

II. MODELING FORMALISM AND BACKGROUND

A. Events, Automata, and Their Composition

In this article, we consider DESs modeled as deterministic or
nondeterministic automata.

Definition 1: A (nondeterministic) finite-state automaton is
a tuple G = 〈Σ, Q,→, Q0〉, where Σ is a finite set of events, Q
is a finite set of states, → ⊆ Q×Σ×Q is the state transition
relation, andQ0 ⊆ Q is the set of initial states.G is deterministic
if |Q0| = 1 and if x

σ→ y1 and x
σ→ y2 always implies that

y1 = y2.
When state marking is considered, the above definition is

extended to G = 〈Σ, Q,→, Q0, Qm〉, where Qm ⊆ Q is the set
of marked states. In this article, we identify marked states using
gray shading in the figures.

We assume that the system is partially observed; thus, the
concepts of observable and unobservable events are introduced.
Since the exact identity of unobservable events is irrelevant in
our later discussion of opacity, they are uniformly represented by
a special event τ . The event τ is never included in the alphabet
Σ, unless explicitly mentioned. For this reason, Στ = Σ ∪ {τ}
is used to represent the whole set of observable and unobservable
events. Hereafter, nondeterministic automata may contain tran-
sitions labeled by τ , while deterministic automata never contain
τ transitions. Moreover, Pτ : Σ∗

τ → Σ∗ is the projection that
removes from strings in Σ∗

τ all the τ events.
When automata are brought together to interact, lock-step

synchronization in the style of [15] is used.
Definition 2: Let G1 = 〈Σ1, Q1,→1, Q

0
1, Q

m
1 〉 and G2 =

〈Σ2, Q2,→2, Q
0
2, Q

m
2 〉 be two nondeterministic automata. The

synchronous composition of G1 and G2 is defined as

G1 ‖G2 :=
〈
Σ1 ∪Σ2, Q1×Q2,→, Q0

1×Q0
2, Q

m
1 ×Qm

2

〉

(1)
where

(x1, x2)
σ→ (y1, y2) if σ ∈ (Σ1 ∩Σ2)

x1
σ→1 y1, and x2

σ→2 y2

(x1, x2)
σ→ (y1, x2) if σ ∈ (Σ1 \Σ2) ∪ {τ}

and x1
σ→1 y1

(x1, x2)
σ→ (x1, y2) if σ ∈ (Σ2 \Σ1) ∪ {τ}

and x2
σ→2 y2 .

Importantly, synchronous composition only imposes lock-
step synchronization on common events from Σ1 and Σ2.

The transition relation of an automaton G is written in infix
notationx

σ→ y, and it is extended to strings inΣ∗
τ by lettingx

ε→
x for all x ∈ Q, and x

tσ→ z if x
t→ y and y

σ→ z for some y ∈ Q.
Furthermore, x

t→ means that x
t→ y for some y ∈ Q, and x→y

means that x
t→ y for some t ∈ Σ∗

τ . These notations also apply

to state sets, whereX
t→ Y forX,Y ⊆ Qmeans that x

t→ y for
some x ∈ X and y ∈ Y , and to automata, where G

t→ means
that Q0 t→ (t is defined in G) and G

t→ x means Q0 t→ x.
For brevity, p

s⇒ q for s ∈ Σ∗ represents the existence of a

string t ∈ Σ∗
τ such that Pτ (t) = s and p

t→ q. Thus, q
u→ p for

u ∈ Σ∗
τ means a path containing exactly the events in u, while

q
u⇒ p for u ∈ Σ∗ means existence of a path between p and q

with an arbitrary number of τ events between the observable
events in u. Similarly, p

τ⇒ q means the existence of a string

t ∈ {τ}∗ such that p
t→ q.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

MOHAJERANI et al.: COMPOSITIONAL AND ABSTRACTION-BASED APPROACH FOR SYNTHESIS OF EDIT FUNCTIONS 3351

The language of an automaton G is defined as L (G) = { s ∈
Σ∗ | G s⇒}, and the language generated by G from q ∈ Q is
L (G, q) = {s ∈ Σ∗ | q s⇒}; thus, we do not include event τ
in the language of an automaton. Moreover, we also introduce
projections Pi for i = 1, 2, which are Pi : (Σ1 ∪Σ2)

∗ → Σ∗
i

for i = 1, 2.
For a nondeterministic automaton G = 〈Στ , Q,→, Q0〉,

the set of unobservably reached states of B ∈ 2Q, is
UR(B) =

⋃{C ⊆ Q | B
τ⇒ C}. Its observer det(G) =

〈Σ, Xobs,→obs, X
0
obs〉 is a deterministic automaton, where

X0
obs = UR(Q0) andXobs ⊆ 2Q, andX

σ→obs Y , whereX,Y ∈
Xobs, if and only if Y =

⋃{UR(y) | x
σ→ y for some x ∈

X and y ∈ Q}. By convention, only reachable states from X0
obs

under →obs are considered in this article. We also refer to the
observer as the (current-state) estimator of the system, while an
observer state is referred to as (current-state) estimate.

A common automaton operation is the quotient modulo,
which is an equivalence relation on sets of states.

Definition 3: Let Z be a set. A relation ∼ ⊆ Z × Z is called
an equivalence relation on Z if it is reflexive, symmetric, and
transitive. Given an equivalence relation∼ onZ, the equivalence
class of z ∈ Z is [z] = { z′ ∈ Z | z ∼ z′ }, and Z̃ = { [z] | z ∈
Z } is the set of all equivalence classes modulo ∼.

Definition 4: Let G = 〈Σ, Q,→, Q0〉 be an automaton and
let∼ ⊆ Q×Q be an equivalence relation. The quotient automa-
ton of G modulo ∼ is G̃ = 〈Σ, Q̃,→/∼, Q̃0〉, where →/∼ =

{ ([x],σ, [y]) | x σ→ y } and Q̃0 = { [x0] | x0 ∈ Q0 }.
In order to compare automata structurally, we say that an

automaton is a subautomaton of another automaton if all states
and transitions in the first automaton are contained in the second
one. Formally, we have the following definition.

Definition 5: Let G1 =
〈
Στ , Q1,→1, Q

0
1, Q

m
1

〉
and G2 =〈

Στ , Q2,→2, Q
0
2, Q

m
2

〉
be two automata.G1 is a subautomaton

ofG2, denoted byG1 � G2, ifQ1 ⊆ Q2,→1 ⊆ →2,Q0
1 ⊆ Q0

2,
and Qm

1 ⊆ Qm
2 .

B. Supervisory Control Theory

Considering plant G and specification K, supervisory control
theory provides a method to synthesize a supervisor to restrict
the behavior of the plant such that the given specification is
always fulfilled. The supervisor S is a function defined from
the language of the system G to the set of events; formally,
S : L (G) → 2Σ. We also partition the set of events as uncon-
trollable events and controllable events, i.e., Σ = Σuc ∪Σc,
where uncontrollable events cannot be disabled by the super-
visor. In the figures, the uncontrollable events are marked by
an exclamation mark (!). The readers may refer to [4] for
the main results of monolithic supervisory control under full
observation. Here, we focus on concepts and definitions rel-
evant to this article, and the synthesis procedure in this arti-
cle is done on deterministic automata. Two requirements for
the supervisor are controllability and nonblockingness, where
controllability captures safety in the presence of uncontrol-
lable events and nonblockingness focuses on liveness of the
system.

Definition 6 (see[4]): Let G =
〈
Σ, QG,→G, Q

0
G, Q

m
G

〉
and

K =
〈
Σ, QK ,→K , Q0

K , Qm
K

〉
be two deterministic automata

such that K � G. K is controllable w.r.t. G if, for all states x ∈
QK and y ∈ QG and for every uncontrollable event υ ∈ Σuc

such that x
υ→G y, it also holds that x

υ→K y.
Definition 7 (see[4]): LetG be a deterministic automaton. A

state x is called reachable in G if G → x, and coreachable in G
if x → Qm. The automatonG is called reachable or coreachable
if every state in G has this property. G is called nonblocking if
every reachable state is coreachable.

The upper bound of controllable and nonblocking subau-
tomata is again controllable and nonblocking. This implies the
existence of a least restrictive subautomaton of the original
system, which is achieved by the maximally permissive and
nonblocking supervisor.

Definition 8: Let G be an automaton; the supremal control-
lable and nonblocking subautomaton ofG is called the supremal
supervisor, denoted by supC(G), where for all controllable and
nonblocking automata K w.r.t. G, K � supC(G).

Synthesis of supC(G) is done by iteratively removing block-
ing and uncontrollable states, until a fixed point is reached, and
restricting the final automaton to the remaining states and their
associated transitions; for more details, see [4], [13], and [44].

In this article, we assume that the modular system has a set
of interacting components {G1, . . . , Gn}, and there is also a set
of supervisors in a modular structure, i.e., S = {S1, . . . , Sn}.
Here, supervisor Si is responsible for controlling Gi. The set of
modular supervisors may be synchronized as

∥∥n
i=1

Si.

C. Opacity and Edit Functions

In this article, we suppose system G has certain secret infor-
mation, which is characterized by the set of states. Thus, the state
space is partitioned into two disjoint subsets: Q = QS ∪QNS ,
where QS is the set of secret states capturing the secrets of
the system, while QNS is the set of nonsecret states. When the
system G is modular, G = {G1, . . . , G2}, the set of secret states
of the system, QS , is QS = {(x1, . . . , xn) |∃xi ∈ QS

i }.
Suppose there is an external intruder modeled as the observer

of the system, which intends to infer the secrets of the system
from its observation. Then, a system is called opaque if the
intruder is unable to determine unambiguously if the system has
entered a secret state or not. Different notions of opacity have
been introduced in the literature, and we focus on current-state
opacity in this article.

Definition 9: A nondeterministic automaton G with a set
of secret states QS is current-state opaque w.r.t. QS if (∀s ∈
L (G, q0) : Q0 s⇒ QS), then [Q0 s⇒ QNS].

The system is current-state opaque if for any string reaching a
secret state, there is string with the same sequence of observable
events reaching a nonsecret state. It is known that current-state
opacity can be verified by building the standard observer au-
tomaton.

Theorem 1: Let G = 〈Στ , Q,→, Q◦〉 be a nondeterminis-
tic automaton with set of secret states QS . Let det(G) =
〈Σ, Xobs,→obs, X

0
obs〉 be the current-state estimator of G. Then,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

3352 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

G is current-state opaque w.r.t. QS if and only if [det(G)
s→

X implies that X �⊆ QS].
If all states violating current-state opacity are removed from

the observer det(G), then the accessible part of the remaining
structure is called the desired observer, denoted by detd(G) =
〈Σ, Xobsd,→obsd, X

0
obsd〉. The language generated by the de-

sired observer is referred to as the safe language, Lsafe =
L (detd(G)). Accordingly, we also define the unsafe language,
Lunsafe = L (G) \ Lsafe.

If a system is not current state opaque, then an interface-based
approach called edit function [20], [47] may be applied to enforce
it. An edit function may insert events into the output of the system
or erase events from the output of the system. It is assumed that
the intruder fails to distinguish between an inserted event and
its genuine counterpart. Let Σr = {σ→ε : σ ∈ Σ} be the set
of “event erasure” events.

Definition 10: A deterministic edit function is defined as fe :
Σ∗ ×Σ → Σ∗. Given s ∈ L (G), σ ∈ Σ,

fe(s,σ) =

⎧
⎪⎨

⎪⎩

sIσ, if sI is inserted before σ

ε, nothing is inserted and σ is erased

sI , if sI is inserted and σ is erased.

With an abuse of notation, we also define a string-based edit
function f̂e recursively as f̂e(ε) = ε, f̂e(sσ) = f̂e(s)fe(s,σ)
for s ∈ Σ∗ and σ ∈ Σ. In the following, to ease the notational
burden, we will drop the “̂ ” in f̂e, and it will be clear from the ar-
gument(s) of fe which function we are referring to (incremental
single-event one or string-based one).

Two notions termed public safety and private safety were de-
fined in [20] to characterize the behavior of edit functions. In this
article, we consider private safety alone under the assumption
that the intruder does not know about the implementation of an
edit function.

Definition 11 (Private safety): Given G and its observer
det(G), an edit function fe is privately safe if ∀s ∈ L (det(G)),
fe(s) ∈ Lsafe.

Recently, a three-player game structure called TPO w.r.t. the
system has been defined in [20] to embed edit functions. For the
sake of completeness, we recall this definition (more details are
available in [20]).

Definition 12 (TPO): Given a system G with its observer
det(G) and desired observer detd(G), let I ⊆ Xobsd ×Xobs be
the set of information states. A TPO w.r.t.G is a tuple of the form
T = (QY , QZ , QW ,Σ,Σr,Θ,→yz,→zz,→zw,→wy, y0),
where, we have the following.

1) QY ⊆ I is the set of Y states.
2) QZ ⊆ I ×Σ is the set of Z states. Let I(z) and E(z)

denote the information state component and observable
event component of a Z state z, respectively, so that z =
(I(z), E(z)).

3) QW ⊆ I × (Σ ∪Σr) is the set of W states. Let I(w)
and A(w) denote the information state component and
action component of a W state w, respectively, so that
w = (I(w), A(w)).

4) Σ is the set of observable events.
5) Σr is the set of event-erasure events.

6) Θ ⊆ Σ ∪ {ε} ∪Σr is the set of edit decisions atZ states.
a) →yz : QY ×Σ×QZ is the transition function

from Y states to Z states. For y = (xd, xf) ∈
QY , eo ∈ Σ, we have y

eo−→yz z ⇒ [xf
eo−→obs] ∧

[I(z) = y] ∧ [E(z) = eo].
b) →zz : QZ ×Θ×QZ is the transition function

from Z states to Z states. For z = ((xd, xf), eo) ∈
QZ , θ ∈ Θ, we have z

θ→zz z′ ⇒ [θ ∈ Σ] ∧ [I(z′)
= (x′

d, xf)] ∧ [xd
θ→detd x′

d] ∧ [E(z′) = eo].
c) →zw1 : QZ ×Θ×QW is theε insertion transition

function from Z states to W states. For z =
((xd, xf), eo) ∈ QZ , θ ∈ Θwe have z

θ→zw1 w ⇒
[θ = ε] ∧ [I(w) = I(z)] ∧ [A(w) = eo] ∧
[xd

eo−→detd] ∧ [xf
eo−→obs].

d) →zw2 : QZ ×Θ×QW is the event erasure
transition function from Z states to W states. For
z = ((xd, xf), eo) ∈ QZ , θ ∈ Θ, we have z

θ→zw2

w ⇒ [θ = eo → ε] ∧ [I(w) = I(z)] ∧ [A(w) =

eo → ε] ∧ [xf
eo−→obs].

e) →wy1 : QW ×Σ×QY is the transition func-
tion from W states whose action component
is in Σ to Y states. For w = ((xd, xf), eo) ∈
QW , we have w

eo−→wy1 y ⇒ [y = (x′
d, x

′
f)] ∧

[xd
eo−→detd x′

d] ∧ [xf
eo−→obs x

′
f].

f) →wy2 : QW ×Σ×QY is the transition function
from W states whose action component is in Σr to
Y states. For w = ((xd, xf), eo −→ ε) ∈ QW , we
have w

eo−→wy2 y ⇒ [y = (xd, x
′
f)] ∧ [xf

eo−→obs

x′
f].

7) y0 = (xobsd,0, xobs,0) ∈ QY is the initial state of T , where
xobsd,0 and xobs,0 are initial states of detd(G) and det(G),
respectively.

In general, a TPO characterizes a game between a dummy
player, the edit function, and the environment (system). The
state space of a TPO is partitioned as: QY states (Y states),
where the dummy player plays; QZ states (Z states), where
the edit function plays; and QW states (W states), where the
environment plays. A Y state contains the intruder’s estimate
(left component) as well as the system’s true state estimate
(right component). A →yz transition is defined out of a Y
state, indicating that an observable event may occur and thus
is received by the edit function. Then, the TPO transits to a Z
state, and the turn of the game is passed to the edit function.
Notice that the observable event does not really occur, and this
dummy player is only introduced to help determine the decisions
of edit functions.

At a Z state, the edit function may choose to insert certain
events (including ε) or erase its last observed event. If a non-ε
event is inserted, a →zz transition leads the TPO to another Z
state, which means the edit function still has the turn to insert
more events until it decides to stop insertion by inserting ε
or by erasing the last observed event. There may be multiple
transitions defined out of a Z state, i.e., multiple edit decisions;
we write Θ(z) to denote the set of edit decisions defined at
z ∈ QZ in a TPO.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

MOHAJERANI et al.: COMPOSITIONAL AND ABSTRACTION-BASED APPROACH FOR SYNTHESIS OF EDIT FUNCTIONS 3353

If the edit function inserts nothing (respectively, erases the
event it receives from the dummy player), then a →zw1 [respec-
tively (→zw2)] transition is defined, and the TPO is at a W state.
Then, the environment plays by letting the observable event ex-
ecuted from its preceding Y state occur. Correspondingly, there
are also two types of→wy transitions, where→wy1 indicates that
the executed observable event will be observed by the intruder,
while →wy2 indicates that the executed observable event will
not be observed by the intruder, since it has been erased by the
edit function.

When the three players take turns to play, the components of
each player’s states also get updated. From Definition 12, a →yz

transition does not change the state estimates for the intruder
or the system, since the player at Y states is dummy and the
observable events from Y states do not really occur. With a →zz

transition, only xd is updated, since xd is the estimate of the
intruder and event insertion only alters the observation of the
intruder. For →zw transitions, we only require the observable
event to be defined atxd orxf . Finally, a→wy1 transition updates
both xd and xf , while a →wy1 transition only updates xf as the
intruder does not observe the erased event.

To characterize the information flow in a TPO, the notion of
run is defined in [20].

Definition 13 (Run): In a TPO T , a run is defined as

ω = y0
e0−→ z10

θ1
0−→ z20

θ2
0−→ · · · θ

m0−1
0−−−−→ zm0

0

θ
m0
0−−→ w0

e0−→ y1
e1−→

z11
θ1
1−→ z21

θ2
1−→ · · · zm1

1

θ
m1
1−−→ w1

e1−→ y2 · · · en−→ z1n
θ1
n−→ · · · zmn

n
θmn
n−−→ wn

en−→ yn+1, where y0 is the initial state of T , ei ∈ Σ,
θji ∈ Θ(zji), ∀0 ≤ i ≤ n, 1 ≤ j ≤ mi and n ∈ N, mi ∈ N+.

We let ΩT be the set of all runs in a TPO T . For simplicity,
similar notations as for automata are defined for TPOs, and thus,
T

ω→ x denotes the existence of a run in a TPO. We also review
the concepts of string generated by a run and edit projection
defined in [20].

Definition 14 (String generated by a run): Given a run ω as
in Definition 13, the string generated by ω is defined as l(ω) =
θ10θ

2
0 · · · θm0−1

0 θm0
0 e0θ

1
1 · · · θm1

1 e1 · · · en−1θ
1
n · · · θmn

n en, where
∀i ≤ n, θmi

i ei = ε if θmi
i = ei → ε.

Definition 15 (Edit projection): Given TPO T and runωT as
in Definition 13, the edit projection Pe : Ω → L (G) is defined
such that Pe(ωT) = e0e1 · · · en.

In a TPO, y ∈ QY is a terminating state if � ∃eo ∈ Σ, s.t.
y

eo→. And w ∈ QW is a deadlocking state if � ∃eo ∈ Σ, s.t.
w

eo→ y. Also, z ∈ QZ is a deadlocking state if � ∃θ ∈ Θ, s.t.

z
θ→ z′ or z

θ→ w. We call a TPO T complete [20] if there are
no deadlocking W or Z states in T and ∀s ∈ L (G), ∃ω ∈ ΩT ,
s.t. Pe(ω) = s.

Definition 16 (Edit function embedded in TPO): Given a
TPO T , a deterministic edit function fe is embedded in T if
∀s ∈ L (G), ∃ω ∈ ΩT , s.t. Pe(ω) = s and l(ω) = fe(s).

Next, we construct the largest TPO in the sense that all the
other TPOs are subautomata of it. Such a notion is well defined
by considering all admissible transitions at every state of the
TPO, according to the respective conditions in Definition 12.

Edit functions are designed to erase genuine events or insert
fictitious ones to mislead the intruder. In theory, it is possible to

design an edit function that erases all the events of the system,
although this is not desirable. To avoid this situation, usually,
the user provides some constraints on the edit functions. The
constraint that is considered in this article is to limit the number
of consecutive erasures.

Definition 17 (Edit constraint): The edit constraint, denoted
by Φ, requires that the edit function should not make n+ 1
consecutive erasures where n ∈ N.

Finally, we define the AES [20] by considering the edit
constraint. A synthesis procedure was also presented in [20]
to construct the AES. Notice that the following definition is
slightly different from the AES in the preliminary version
of this work [26] since edit constraints are not considered
in [26].

Definition 18 (AES): Given system G, observer det(G),
and desired estimator detd(G), the AES is defined to be
the largest complete TPO w.r.t. G, which satisfies the edit
constraint.

From results in [20], private safety is achievable when the
AES is not empty by construction. Hereafter, we assume that the
AES is nonempty in the following discussion; if it is empty, then
opacity cannot be enforced by the mechanism of edit functions.
It was also proven in [20] that all privately safe edit functions
satisfying edit constraints are embedded in the AES. Formally
speaking, the following result holds.

Theorem 2: Given a system G and its corresponding AES
under edit constraint Φ, an edit function fe is privately safe and
satisfies Φ if and only if fe ∈ AES.

We end this section by briefly reviewing the pruning pro-
cess discussed in [20] to construct the AES. The presence of
edit constraints may preclude some undesired states from the
AES, thus leaving some states without outgoing transitions, i.e.,
“deadlock” Z or W states. Those states reflect the inability of
the edit function to issue a valid edit decision (for insertion or
erasure) while still maintaining opacity for all possible future
behaviors and, thus, should be removed in the pruning process.
Moreover, Y states that have transitions to a deadlock Z state
need to be pruned as well, since Y states are the states where
the system issues an output event and the edit function is not
allowed to prevent their occurrence.

The construction of the AES may also be interpreted as the
calculation of a supervisor, where the “plant” is the largest TPO
in terms of subautomaton, including all potentially feasible edit
decisions without considering edit constraints. The Y states are
considered as marked states. The events labeling transitions from
Y states toZ states and fromW states to Y states are considered
as uncontrollable, while the events labeling transitions from
Z states to Z states and Z states to W states are viewed as
controllable. We also define the proper specification by con-
sidering edit constraints, deleting states that violate them, and
taking the trim of the resulting structure. The goal is to calculate
the least restrictive, controllable, and nonblocking supervisor
based on the plant and this specification. Similar processes of
pruning game structures akin to TPOs were discussed in prior
work, e.g., [18], [20], [46]. We will leverage this approach
in the following discussion, but in the framework of modular
supervisory control.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

3354 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

Fig. 1. Steps of Algorithm CA-AES.

III. COMPOSITIONAL ABSTRACTION-BASED METHODOLOGY

This section presents our novel compositional and
abstraction-based methodology for synthesizing modular
form edit functions based on individual TPOs after abstracting
the original system. For simplicity, we call this methodology the
composition abstraction all edit structure (CA-AES) algorithm
hereafter. The input of the algorithm is a set of nondeterministic
automata, G = {G1, . . . , Gn}, and the output is a modular
representation of edit functions, which is called modular edit
structure. The algorithm is summarized in Fig. 1, and its steps
are as follows. We will explain how to interpret the modular
representation of edit functions later.

(i) The algorithm first abstracts each individual automaton,
Gi, using opaque observation equivalence. This results
in G̃i, which has fewer states and transitions compared
to the original automaton.

(ii) Next, we abstract the observer of G̃i, i.e., det(G̃i), by
opaque bisimulation and bisimulation, resulting in two
abstracted deterministic automata Hi,ob and Hi,b.

(iii) Then we calculate the abstracted desired observer of Gi

from Hi,ob, which is denoted by Hi,obd.
(iv) Afterward, the largest (abstracted) TPO of each indi-

vidual component Gi is calculated from the abstracted
observerHi,b and the abstracted desired observerHi,obd,
and it is denoted by TPOi.

(v) The final step is to calculate a modular nonblocking and
controllable supervisor, then obtain a set of modular edit
functions. This is done by transforming the largest TPOs
and the edit constraint to a set of automata, i.e., GT

i and
K, respectively. This modular approach is in contrast to
calculating monolithic edit functions embedded in the
monolithic AES [20].

Specifically, in step (iv), each abstracted TPO w.r.t. the cor-
responding individual system together with the constraint Φ are
transformed to a set of interacting automata. Then, in step (v),
a modular supremal controllable and nonblocking supervisor is
calculated, thereby fulfilling the edit constraint in the composed
structure. Consequently, the modular edit structure is itself a
modular supervisor. Regarding step (v), it is possible to leverage
existing efficient algorithms on modular supervisory control to
calculate the modular edit structure.

In the monolithic approach of calculating the AES, individual
systems G1 through Gn are synchronized first, and then, the
observer of the synchronized system is built. Since the com-
putational complexity of calculating the observer is exponen-
tial, synchronizing individual components before building the
observer significantly increases the complexity, which may be
2
∏n

i=1 |Qi| in the worst case, where |Qi| is the cardinality of Qi.
Moreover, constructing the AES is polynomial in terms of the
state space of the observer, which may be potentially intractable
when we deal with the synchronized system. In contrast, our
compositional and abstraction-based approach reduces com-
putational cost considerably both from abstracting individual
systems and conducting computation in a modular way. How-
ever, as will be demonstrated later, some edit decisions may be
omitted in the modular edit structure output by the CA-AES
algorithm.

The presented approach relies heavily on the use of TPOs.
We present an example to better understand the structure of such
observers.

Example 1: Consider the nondeterministic automaton G1

with secret states set QS
1 = {q3}, shown in Fig. 2. To generate

the TPO of G1, first the observer of G1 needs to be built, which
is shown as det(G1) in Fig. 2. To generate the desired observer,
the state {q3} ⊆ QS

1 needs to be removed. The desired observer
detd(G1) is shown in Fig. 2.

Then, we follow the procedures in [20] to build the TPO w.r.t.
det(G1) in Fig. 2 (labeled as T ′

1). As is discussed, the game on
the TPO is initiated from the Y state (q0, q0), where the dummy
player executes the observable event γ (the only event defined
at q0 in det(G1)). Then, the edit function takes the turn to play at
the Z state (q0, q0,γ), where it has two choices: insert nothing
or erase γ. If γ is erased, then the W state (q0, q0,γ → ε) is
reached, where the environment plays by executing γ. Then,
the turn is passed back to the dummy player, and the rest of the
structure is interpreted similarly.

The compositional abstraction-based approach is explained
in more detail in the following sections. First, in Section IV, we
discuss abstractions at the component level and synchronization
of individual TPOs, formalizing steps (i)–(iv) of the CA-AES
algorithm. Then, in Section V, we discuss the last step of the
CA-AES algorithm.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

MOHAJERANI et al.: COMPOSITIONAL AND ABSTRACTION-BASED APPROACH FOR SYNTHESIS OF EDIT FUNCTIONS 3355

Fig. 2. System G = {G1,G2} and its abstraction {G̃1, G̃2}. The figure
also shows the largest TPOs T ′

1 and T ′
2 of the abstracted components

and their automata transformations, denoted by GT
1 and GT

2 . The un-
controllable events are marked by (!).

IV. SYNCHRONIZATION AND ABSTRACTION OPERATIONS

This section presents results on abstraction and composition
that support steps (i)–(iv) of the CA-CAS algorithm. First,
Section IV-A describes the methods to abstract nondeterministic
automata and their observers. Next, Section IV-B describes the

process of transforming every individual TPO to an automaton
form and shows that the automaton representation is a substruc-
ture (in the sense of subgraph) of the largest monolithic TPO.

A. Opaque Observation Equivalence

The first strategy used in the CA-AES algorithm to alleviate
state-space explosion is abstraction of system components. This
subsection contains a collection of abstraction methods that
can be used to abstract nondeterministic automata and their
observers such that the abstracted observers and the desired
observers are bisimilar to their original counterparts. The ab-
straction methods are based on bisimulation and observation
equivalence, which are computationally efficient and can be cal-
culated in polynomial time [12]. We will prove in Theorem 5 that
if we build the largest TPO based on the abstracted observer and
the desired observer, we obtain the same runs and, consequently,
the same edit functions as we do from the largest TPO based on
the original observer and desired observer.

Bisimulation is a widely used notion of abstraction that
merges states with the same future behavior.

Definition 19 (see[25]): Let G = 〈Στ , Q,→, Q0〉 be a non-
deterministic automaton. An equivalence relation ≈ ⊆ Q×Q
is called a bisimulation on G, if the following holds for all
x1, x2 ∈ Q such that x1 ≈ x2: if x1

σ→ y1 for some σ ∈ Στ ,
then there exists y2 ∈ Q such that x2

σ→ y2, and y1 ≈ y2.
Bisimulation seeks to merge states with the same outgoing

transitions to equivalent states including unobservable events,
i.e., τ events. If the unobservable events are disregarded, a
more general abstraction method called weak bisimulation or
observation equivalence naturally comes [25].

Definition 20: Let G = 〈Στ , Q,→, Q0〉 be a nondetermin-
istic automaton. An equivalence relation ∼ ⊆ Q×Q is called
an observation equivalence on G, if the following holds for all
x1, x2 ∈ Q such thatx1 ∼ x2: ifx1

s⇒ y1 for some s ∈ Σ∗, then
there exists y2 ∈ Q such that x2

s⇒ y2, and y1 ∼ y2.
In order to use observation equivalence for abstraction in

the opacity setting, the set of secret states needs to be taken
into account. In the following discussion, a restricted version of
observation equivalence called opaque observation equivalence
is employed. This notion was first defined in [27] in the context
of verifying opacity.

Definition 21: Let G = 〈Στ , Q,→, Q0〉 be a nondetermin-
istic automaton with set of secret states QS ⊆ Q and set of
nonsecret statesQNS = Q \QS . An equivalence relation∼o ⊆
Q×Q is called an opaque observation equivalence on G with
respect to QS , if the following holds for all x1, x2 ∈ Q such that
x1 ∼o x2.

1) If x1
s⇒ y1 for some s ∈ Σ∗, then there exists y2 ∈ Q

such that x2
s⇒ y2, and y1 ∼o y2.

2) x1 ∈ QS if and only if x2 ∈ QS .
We also wish to use bisimulation to abstract the observer of

a nondeterministic system. Besides opaque observation equiva-
lence, opaque bisimulation is also defined.

Definition 22: Let G = 〈Στ , Q,→, Q0〉 be a nondeter-
ministic automaton with set of secret states QS ⊆ Q
and set of nonsecret states QNS = Q \QS . Let det(G) =

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

3356 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

〈Σ, Xobs,→obs, X
0
obs〉 be the observer of G. An equivalence

relation ≈o⊆ Xobs ×Xobs is called an opaque bisimulation
equivalence on det(G) with respects to QS , if the following
holds for all X1, X2 ∈ Xobs such that X1 ≈o X2.

1) IfX1
s→ Y1 for some s ∈ Σ∗, then there exists Y2 ∈ Xobs

such that X2
s→ Y2, and Y1 ≈o Y2.

2) X1 ⊆ QS if and only if X2 ⊆ QS .
The first step of the CA-AES algorithm is to abstract the

system using opaque observation equivalence. It has been shown
in [32] that if two automata are bisimilar, then their observers
are also bisimilar. In this article, this result is extended such
that abstracting a nondeterministic automaton using opaque
observation equivalence results in an observer and a desired
observer, which are bisimilar to the observer and the desired
observer of the original system, respectively.

Proposition 3: Let G = 〈Στ , Q,→, Q0〉 be a nondetermin-
istic automaton with set of secret states QS ⊆ Q and set of non-
secret states QNS = Q \QS . Let ∼0 be an opaque observation
equivalence on G resulting in G̃ and let ≈ be a bisimulation. Let
detd(G) and detd(G̃) be the desired observer of G and G̃. Then,
det(G) ≈ det(G̃) and detd(G) ≈ detd(G̃).

Proof: First, we prove that det(G) ≈ det(G̃). To prove
det(G) ≈ det(G̃), it is enough to show that det(G)

s→ X if
and only if det(G̃)

s→ X̃ , which implies language equivalence
between det(G) and det(G̃), since det(G) and det(G̃) are de-
terministic. This can be shown by induction. Moreover, in the
induction, we also show that x ∈ X if and only if there exists
[x′] ∈ X̃ such that x ∈ [x′]. This is used for the second part of
the proof, where we show detd(G) ≈ detd(G̃).

It is shown by induction on n ≥ 0 that X0 σ1→ X1 σ2→ . . .
σn→

Xn in det(G) if and only if X̃0 σ1→ X̃1 σ2→ . . .
σn→ X̃n in det(G̃)

such that x ∈ Xj if and only if [x′] ∈ X̃k, where x ∈ [x′], for
1 ≤ j ≤ n.

Base case: n = 0. Let X0 be the initial state of det(G) and
X̃0 be the initial state of det(G̃). It is shown that x ∈ X0 if and
only if there exists [x′] ∈ X̃0 such that x ∈ [x′].

First, letx ∈ X0. Then, based onUR(x0), it follows that there
existsx0 ∈ Q0 such thatx0 τ⇒ x inG. SinceG ∼o G̃ then based
on Definition 21, there exists [x′0] ∈ X̃0 such that [x′0] τ⇒ [x′]
in G̃ such that x0 ∈ [x′0] and x ∈ [x′]. Then, based on UR(x0)
it follows that [x′] ∈ X̃0.

Now, let [x′] ∈ X̃0. Then, based on UR(x0), it follows that
there exists [x′0] ∈ Q0 such that [x′0] τ⇒ [x′] in G̃. Since G ∼o

G̃ then based on Definition 21, there exists x0 ∈ X0 such that
x0 τ⇒ x in G such that x0 ∈ [x′0] and x ∈ [x′]. Then, based on
UR(x0), it follows that x ∈ X0.

Inductive step: Assume the claim holds for some n ≥ 0,

i.e., X0
σ1σ2...σn−−−−−→ Xn = X in det(G) if and only if X̃ =

X̃0
σ1σ2...σn−−−−−→ X̃n = X̃ in det(G̃), such that x ∈ Xk if and only

if there exists [x′] ∈ X̃k such that x ∈ [x′] for all 0 ≤ k < n.1

It must be shown that X = Xn σn+1−→ Y in det(G) if and only if

1Since the base case of the induction is proven forn = 0,X0 ε→, the inductive
step is considered true for 0 ≤ k < n.

X̃ = X̃n σn+1−→ Ỹ in det(G̃) such that x ∈ X if and only if there
exists [x′] ∈ X̃ such that x ∈ [x′].

First, let X = Xn σn+1−→ Y in det(G) and let x ∈ X . Then,

based on UR(x), it holds that x = x1 τ⇒ · · · τ⇒ xr σn+1−→ y in
G, where xj ∈ X for all 1 ≤ j ≤ r and y ∈ Y . Since G ∼o

G̃, it holds that [x′] = [x′1] τ⇒ · · · τ⇒ [x′r]
σn+1−→ [y′] in G̃ such

that xj ∈ [x′j] for all 1 ≤ j ≤ r and y ∈ [y′]. Based on UR(x)

and inductive assumption, it holds that det(G̃)
σ1σ2...σn−−−−−→ X̃n =

X̃
σn+1−→ Ỹ and [x′] ∈ X̃ .

Now, let X̃ = X̃n σn+1−→ Ỹ in det(G̃) and let [x] ∈ X̃ . Then,

based on UR(x), it holds [x] = [x1]
τ⇒ · · · τ⇒ [xr]

σn+1−→ [y] in
G̃, where [xi] ∈ X̃ for all 1 ≤ i ≤ r and [y] ∈ Ỹ . SinceG ∼o G̃,

it holds that x′ = x′1 τ⇒ · · · τ⇒ x′r σn+1−→ y′ in G̃ such that x′i ∈
[xi] for all 1 ≤ i ≤ r and y′ ∈ [y]. Based on UR(x) and induc-

tive assumption, it holds that det(G)
σ1σ2...σn−−−−−→ Xn = X

σn+1−→ Y
such that x′ ∈ X .

Now, we need to show that detd(G) ≈ detd(G̃). It was proven
above that det(G) ≈ det(G̃), which means det(G)

s→ X if and
only if det(G̃)

s→ X̃ and x ∈ X if and only if [x′] ∈ X̃ , where
x ∈ [x′]. Therefore, it is enough to show that X �∈ Xobsd if and
only if X̃ �∈ X̃obsd.

First, assume X ⊆ QS , which means for all x ∈ X , it holds
that x ∈ QS and X �∈ Xobsd. Since for all x ∈ X , it holds that
there exist [x′] ∈ X̃ such that x ∈ [x′], then based on Defini-
tion 21, it holds that [x′] ∈ Q̃S . Thus, it can be concluded that for
all [x′] ∈ X̃ , it holds that [x′] ∈ Q̃S . This means that X̃ ⊆ Q̃S ,
and consequently, X̃ �∈ X̃obsd.

Now, assume X̃ ⊆ Q̃S , which means for all [x′] ∈ X̃ , it holds
that [x′] ∈ Q̃S and X̃ �∈ X̃obsd. If [x′] ∈ Q̃S , then for allx ∈ [x′],
it holds that x ∈ QS . Moreover, it was shown above that [x′] ∈
X̃ if and only if x ∈ X , where x ∈ [x′]. Thus, from X̃ ⊆ Q̃S , it
follows that X ⊆ QS , which means that X �∈ Xobsd.

Thus, it can be concluded that detd(G) ≈ detd(G̃). �
Opaque observation equivalence seeks to merge states of

a nondeterministic automaton, which are “equivalent,” be-
fore constructing the observer. After calculating the observer,
it is possible to further abstract the observer using opaque
bisimulation. This guarantees that the smallest abstracted ob-
server generates the same language as the original observer.
In the following, Proposition 4 shows that if opaque bisim-
ulation is used to abstract the observer, then the abstracted
desired observer is also bisimilar to the original desired
observer.

Proposition 4: Let G = 〈Στ , Q,→, Q0〉 be a nondetermin-
istic automaton with set of secret states QS ⊆ Q and set of
nonsecret states QNS = Q \QS . Let ≈o be an opaque bisim-

ulation on det(G) resulting in d̃et(G). Let detd(G) and Hd be

the desired observers of det(G) and d̃et(G), respectively. Then,
detd(G) ≈ Hd, where ≈ is a bisimulation relation.

Proof: Since det(G) ≈o d̃et(G) based on Definition 22, it

holds that det(G)
s→ X if and only if d̃et(G)

s→ [X ′] and X ∈
[X ′]. Thus, it is enough show that X �∈ Xobs,detd(G) if and only
if [X ′] �∈ Xobs,Hd

, where X ∈ [X ′].

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

MOHAJERANI et al.: COMPOSITIONAL AND ABSTRACTION-BASED APPROACH FOR SYNTHESIS OF EDIT FUNCTIONS 3357

First, assumeX ⊆ QS , soX �∈ Xobs,detd(G). Then, sinceX ∈
[X ′], based on Definition 22, it holds that for allX ′ ∈ [X ′],X ′ ⊆
QS . This means [X ′] ⊆ QS , and consequently, [X ′] �∈ Xobs,Hd

.
Then, assume [X ′] ⊆ QS , so [X ′] �∈ Xobs,Hd

. Since X ∈
[X ′], based on Definition 22, X ⊆ QS holds, i.e., X �∈
Xobs,detd(G). �

We now present the main results of this subsection.
Theorem 5: Let G be a nondeterministic automaton with

secret states QS ⊆ Q and nonsecret states QNS = Q \QS . Let
det(G) and detd(G) be the observer and the desired observer of
G, respectively. Let ∼o be an opaque observation equivalence
on G such that G̃ ∼o G. Let Hob ≈o det(G̃) and Hb ≈ det(G̃),
where ≈o and ≈ are opaque bisimulation and bisimulation,
respectively. Let Hobd be the desired observer of Hob. Let T
be the largest TPO w.r.t. det(G) and detd(G), also let T ′ be the
largest TPO w.r.t. Hobd and Hb. Then, T

ω→ q if and only if
T ′ ω→ q̃.

Formal proof of Theorem 5 can be found in [55]. Theorem 5
proves that the largest TPO obtained from the abstracted system
(using opaque observation equivalence and opaque bisimula-
tion) has the same set of runs with that obtained from the original
system. This result is essential for the correctness of the CA-AES
algorithm.

Remark 1: The abstractions in the worst-case scenario fail
to merge any states. However, as pointed out in this article,
the complexity of the abstraction methods is polynomial, while
the complexity of calculating the observer is exponential in the
number of states. Thus, if the abstraction results in merging even
few states, it can potentially reduce the complexity of calculating
the observer significantly. Therefore, it is worth applying the
abstraction algorithm before calculating the observers.

Example 2: Consider the nondeterministic system G =
{G1, G2}, shown in Fig. 2, with secret states sets QS

1 = {q3}
andQS

2 = {s3}, where all the events are observable except event
τ . In G1, states q1 and q2 are opaque observation equivalent as
they both have the same secrecy status and equivalent states
can be reached from both, q1

α→ q3 and q2
α→ q3, and q1

τ→ q2
and q2

ε→ q2. Merging q1 and q2 results in the abstracted au-
tomaton G̃1 shown in Fig. 2. Moreover, states s1 and s2 are
also opaque observation equivalent, and merging them results
in automaton G̃2 shown Fig. 2. After abstracting the automata,
the system becomes a deterministic system. Moreover, the ob-
servers as of G̃1 and G̃2 are bisimilar to det(G1) and det(G2),
respectively. The same is also true for the desired observer of
G̃1 and G̃2. Fig. 2 shows the largest TPOs of G̃1 and G̃2,
respectively.

B. Synchronous Composition of TPOs

The second strategy used in the CA-AES algorithm to re-
duce computation complexity is synchronous composition of
individual systems. In this article, the main advantage of our
compositional approach is to build the largest TPO of each
component individually, instead of synchronizing individual
components and then building the largest monolithic TPO. Be-
fore synchronization, we first transfer each individual TPO to an
automaton using Definition 23. Next, the individual automata are

transformed to a set of interacting automata based on Defi-
nition 24. It is shown in Theorem 8 that the set of modular
TPOs form a subsystem of their monolithic counterpart, in the
sense that some runs are omitted after synchronization. Before
Theorem 8, Lemmas 6 and 7 establish that synchronization
of individual observers (respectively, desired observers) is iso-
morphic to the observer (respectively, desired observers) of the
synchronized system.

Definition 23: Let T = 〈QY , QZ , QW , Σ, Σε,Θ,→yz,
→zz,→zw,→wy, y0〉 be a TPO. Automaton MT = 〈ΣMT , Q,
→, Q0, Qm〉 is the monolithic transformed deterministic au-
tomaton of T where we have the following.

1) ΣMT = Σ ∪ [
⋃

p∈QZ

ΘE(p)] ∪ [
⋃

p∈QW
ΣA(p),w].

2) Q = QY ∪QZ ∪QW .
3) → = {(p,α, q) | p ∈ Qy ∧ p

α→yz q}⋃{(p,σ, q) | p ∈
QZ ∧ σ = αE(p) ∧ p

α→zz,zw1,zw2
q}⋃{(p,σ, q) | p ∈

QW ∧ σ = αA(p),w ∧ p
α→wy1,wy2

q}.
4) Q0 = y0.
5) Qm = QY .

The events labeling outgoing transitions mapped from
original Y states in T , i.e., {(p,α, q) | p ∈ Qy ∧ p

α→yz q}
and outgoing transitions mapped from original W states in
T , {(p,σ, q) | p ∈ QW ∧ σ = αA(p),w ∧ p

α→wy1,wy2
q} are

considered as uncontrollable while the other events are
controllable.

In Definition 23, Σα represents that α is added to all the
events of Σ. To transform a TPO to an automaton, each state of
the TPO is considered as an automaton state, Qi = Qi

Y ∪Qi
Z ∪

Qi
W in Definition 23. Moreover, the information about the states

needs to be considered to distinguish some transitions in the
transformed automaton and to have a correct synchronization of
TPOs, since the information about state types (Y , W , Z) is lost
in the transformation. To this end, in the transformed automaton,
the events labeling the transitions from z to z states, from z to
w states and from w to y states, need to have the information of
the predecessor states reflected in them. Thus, the events in the
transformed automaton have the observable event components
of Z states,

⋃
p∈Qi

Z
Θi

E(p), and the action components of W

states,
⋃

p∈Qi
W
Σi

A(p),w. The initial state of the transformed
automaton is the initial state of the TPO, and the marked states
are the original Y states.

Example 3: Consider the two TPOs T ′
1 and T ′

2 shown in
Fig. 2. To transform the TPOs T1 and T2 to their monolithic
automata, renaming ρ : {α,β,γ, εγ ,γ → εγ ,γγ→ε,w,γε,w,
γα, εβ,β → εβ,ββ→ε,w, βε,w,βα,α → εα,αα→ε,w} →
{α,β,γ, ε,α → ε,β → ε,γ → ε} is introduced. Next, all
Y states in T ′

1 and T ′
2 are considered as marked. Fig. 2 shows

MT
1 and MT

2 , which are the monolithic transformed automata
from T ′

1 and T ′
2, respectively. All the events that come from

transitions defined out of Y states and W states in T ′
1 and T ′

2

are considered as uncontrollable in GT
1 and GT

2 ; thus, α, β, and
γ are uncontrollable.

This article describes the compositional approach for modular
systems. In order to have a correct interaction between the
transformed automata, the transformation of the TPOs needs
to be done in the modular setting.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

3358 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

TABLE I
LINK BETWEEN THE EVENTS OF A TPO, ITS TRANSFORMED AUTOMATON,

AND THE CORRESPONDING RENAMING

Definition 24: Let T = {T1, . . . , Tn} be a TPO system such
that Ti = 〈Qi

Y , Q
i
Z , Q

i
W ,Σi,Σε

i ,Θ
i,→i

yz,→i
zz,→i

zw,→i
wy,

yi0〉. Let MT
i = 〈Σi

MT , Qi
M ,→i

M , Q0
M

i
, Qm

M
i〉 be the mono-

lithic transformed deterministic automaton of Ti, based on Def-
inition 23. The transformed automaton system of T is G T =
{GT

1 , . . . , G
T
n}, where GT

i = 〈Σi
GT , Qi,→i, Q0

i , Q
m
i 〉 and

1) ΣGT
i
= Σi

MT ∪ [
⋃

α∈(Σj\Σi);j �=i

((Σi ∩Σj)α ∪ (Σi ∩

Σj)α,w ∪ (Σi ∩Σj)α→ε,w)];
2) Qi = Qi

M ;
3) →i

M

⋃{(p,α, p) | p ∈ Qi
y and α ∈ ⋃

j �=i(Σ
j \Σi)};

4) Q0
i = Q0

M
i;

5) Qm
i = Qm

M
i.

Since some shared events in the transformed automa-
ton become local after incorporating the extra state in-
formation, they need to be added in the alphabet of the
transformed automaton,

⋃
α∈(Σj\Σi);j �=i((Σ

i ∩Σj)α ∪ (Σi ∩
Σj)α,w ∪ (Σi ∩Σj)α→ε,w) in Definition 24. Moreover, the
events not defined from Y states of certain TPO T but defined
from Y states of some other TPO T ′ are added as self-loops
at the corresponding states in the transformed automaton of T ,
{(p,α, p) | p ∈ Qi

y and α ∈ ⋃
j �=i(Σ

j \Σi)}. To create a map
between the events of a TPO and its transformed automaton,
renaming of events is necessary. Note that when the transfor-
mation of a single automaton is considered, Definitions 23 and
24 produce the same results. Thus, in the following, wherever a
transformed automaton is discussed, we refer to Definition 24.

Renaming ρ simply removes the extra information from the
events of the transformed automaton and maps them back to the
original events in the TPO. To be more specific, ρ is a map such
that ρ(ασ) = α and ρ(α) = α. Table I shows how the events
in a transformed automaton are linked to the original events of
a TPO, while the third column shows how renaming works.
Specifically, in the case where events label →yz transitions,
renaming does not change events names.

Example 4: Consider the abstracted system G̃ = {G̃1, G̃2},
shown in Fig. 2. The sets of secret states are Q̃S

1 = {q3},
Q̃S

2 = {s3}, where all the events are observable. T ′
1 and T ′

2 are
the largest TPOs of G̃1 and G̃2, respectively. In Example 3, the
monolithic transformed automata of T ′

1 and T ′
2 were generated.

The TPO system {T ′
1, T

′
2} is transformed to automata system

G = {GT
1 , G

T
2 }, shown Fig. 2, by adding self-loops at the

marked states. Event β is not in the alphabet of T ′
1 so it appears

as a self-loop at all marked states in GT
1 , which correspond to Y

states in T ′
1. Similarly, γ is added as a self-loop at marked states

in GT
2 since γ is not in the alphabet of T ′

2.
In the following, Theorem 8 proves that if the synchronization

of transformed individual TPOs contains a transition, then the
largest monolithic TPO w.r.t. the synchronized system also
contains an equivalent transition. However, the inverse is not
necessarily true as there are some behaviors in the monolithic
TPO that are omitted in the modular structure. Before Theo-
rem 8, Lemma 6 [38] and Lemma 7 establish that the modular
observer and desired observer are isomorphic to their monolithic
counterparts.

Lemma 6 (see[38]): Let G1 = 〈Σ1, Q1,→1, Q
0
1〉 and G2 =

〈Σ2, Q2,→2, Q
0
2〉 be two nondeterministic automata. Then,

det(G1 ‖G2) is isomorphic to det(G1) ‖ det(G2).
Lemma 7: Let G1 = 〈Q1,Σ1,→1, Q

0
1〉 and G2 = 〈Q2,Σ2,

→2, Q
0
2〉 be two nondeterministic automata with sets of secret

states QS
1 and QS

2 , respectively. Then, detd(G1) ‖ detd(G2) is
isomorphic to detd(G1 ‖G2).

Proof: From det(G1 ‖G2) is isomorphic to det(G1) ‖
det(G2), it follows that det(G1 ‖G2)

s→ X if and only if
det(G1) ‖ det(G2)

s→ (X1, X2) and (x1, x2) ∈ X if and only
if (x1, x2) ∈ X1 ×X2. Now, we need to show that X �∈ Xobsd

if and only if (X1, X2) �∈ X1,obsd ×X2,obsd.
First, assume X �∈ Xobsd, which means X ⊆ QS . This fur-

ther means that for all (x1, x2) ∈ X , either x1 ∈ QS
1 or x2 ∈

QS
2 , which implies either X1 �∈ X1,obsd or X2 �∈ X2,obsd. Thus,

(X1, X2) �∈ X1,obsd ×X2,obsd.
Now, assume (X1, X2) �∈ X1,obsd ×X2,obsd. This means ei-

ther X1 �∈ X1,obsd or X2 �∈ X2,obsd, which implies either X1 ⊂
QS

1 or X2 ⊂ QS
2 . Hence, for all (x1, x2) ∈ (X1, X2) = X ei-

ther x1 ∈ QS
1 or x2 ∈ QS

2 , which implies X ⊆ QS . Thus, X �∈
Xobsd. �

Theorem 8: Let G1 = 〈Q1,Σ1,→1, Q
0
1〉 and G2 =

〈Q2,Σ2,→2, Q
0
2〉 be two nondeterministic automata with

sets of secret states QS
1 and QS

2 , respectively. Let T1 =
〈Q1

Y , Q
1
Z , Q

1
W ,Σ1,Σ

ε
1,Θ1,→1

yz,→1
zz,→1

zw,→1
wy, y

1
0〉 and

T2 = 〈Q2
Y , Q

2
Z , Q

2
W ,Σ2,Σ

ε
2,Θ2,→2

yz,→2
zz,→2

zw,→2
wy, y

2
0〉

be the largest TPOs w.r.t. G1 and G2, respectively. Let GT
1 =

〈ΣGT
1
, Q1,→1, Q0

1, Q
m
1 〉 and GT

2 = 〈ΣGT
2
, Q2,→2, Q0

2, Q
m
2 〉

be the transformed automata of T1 and T2, respectively. Let
T be the largest monolithic TPO w.r.t. G1||G2. Then, let
ρ : (ΣGT

1
∪ΣGT

2
) → (Σ1 ∪Σε

1 ∪Θ1) ∪ (Σ2 ∪Σε
2 ∪Θ2) be

a renaming. We have [GT
1 ‖GT

2
s→ (q1, q2)] ⇒ [T

ρ(s)→ q].
Formal proof of Theorem 8 can be found in [55]. Theorem 8

shows that synchronization of individual transformed TPOs is a
subsystem of the largest monolithic TPO. Specifically, if there is
a string s in GT

1 ‖GT
2 , then there always exists a corresponding

path ρ(s) inT . The synchronized automaton form TPOs may not
always be equal to the monolithic TPO, since some →zz transi-
tions may not appear in the synchronized system. This happens
when a state in the synchronization of TPOs is a combination
of an original Z and an original Y state from individual TPOs,
while the observable event component of the original Z state is
a local event.

However, as there is no difference between local and shared
events in the monolithic approach of obtaining TPOs, the

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

MOHAJERANI et al.: COMPOSITIONAL AND ABSTRACTION-BASED APPROACH FOR SYNTHESIS OF EDIT FUNCTIONS 3359

largest monolithic TPO contains all possible transitions of edit
decisions.

The proof of Theorem 8 also illustrates that for every state in
the largest monolithic TPO, there exists a corresponding state in
the synchronized individual TPOs in automaton form.

Remark 2: Although the statement of Theorem 8 concen-
trates on the case of two individual systems, the result can be
generalized to more than two individual systems. �

Remark 3: Notice that Theorem 8 illustrates that some tran-
sitions are “missing” in the synchronized automaton compared
with the largest monolithic TPO T . It further implies that more
transitions will be missing if we synchronize more individual
TPOs (in automaton form). Actually, we may locate those miss-
ing transitions and add them back to the synchronized automaton
‖ni=1G

T
i .

Specifically, consider states (q1, q2, . . . , qn) and
(q′1, q

′
2, . . . , q

′
n) in ‖ni=1G

T
i such that qi, q

′
i ∈ Qi

Y ∪Qi
Z for

all i, i.e., every component in those states is either a Y state
or a Z state from an individual transformed automaton. Then,
we add transition (q1, q2, . . . , qn)

σ−→ (q′1, q
′
2, . . . , q

′
n) if there

exists a set of indexes I ∈ 2{1,2,···n}, such that for all i ∈ I,
qi = (xi,d, xi,f), q

′
i = (x′

i,d, xi,f) ∈ Qi
Y and xi,d

σ−→ x′
i,d in

detd(Gi); while for all i /∈ I, qi = q′i. Intuitively, the added
transition implies that event σ may be inserted in the largest
monolithic TPO w.r.t. ‖ni=1Gi. However, due to the fact that
there are no transitions defined from a Y state to another Y
state in TPOs, those transitions are missing in ‖ni=1G

T
i , which

implies the synchronized system ‖ni=1G
T
i may only contain a

subset of edit decisions in the largest monolithic TPO.
However, the above-mentioned operation may not be pre-

ferred in practice, since it involves explicitly synchronizing
individual TPOs in their automaton form. This is usually not
feasible in modular approaches and should be avoided in our
CA-AES algorithm as well. �

Finally, the results of this section are formally recapped in
Theorem 9, which illustrates that the synchronization of trans-
formed (automaton form) TPOs w.r.t. individual abstracted sys-
tems contain a subset of the transitions of the largest monolithic
TPO. The proof follows directly from Theorems 5 and 8.

Theorem 9: Let G1 and G2 be two nondeterministic au-
tomaton with sets of secret states QS

i ⊆ Qi and sets of
nonsecret states QNS

i = Q \QS
i for i = 1, 2. Let det(Gi)

and detd(Gi) be the observer and the desired observer of
Gi, respectively. Let ∼o be an opaque observation equiva-
lence on Gi such that G̃i ∼o Gi for i = 1, 2. Let Hi,ob ≈o

det(G̃i) and Hi,b ≈ det(G̃i) for i ∈ {1, 2}, where ≈o and
≈ are opaque bisimulation and bisimulation, respectively.
Let T be the largest TPO w.r.t. G1 ‖G2 and let T ′

i =
〈Qi

Y , Q
i
Z , Q

i
W ,Σi,Σ

ε
i ,Θi,→i

yz,→i
zz,→i

zw,→i
wy, y

i
0〉 be the

largest TPO w.r.t. detd(Hi,ob) and Hi,b for i ∈ {1, 2}. Let
GT

i = 〈ΣGT
i
, Qi,→i, Q0

i , Q
m
i 〉 for i = 1, 2 be the transformed

automata of T ′
i and let ρ : (ΣGT

1
∪ΣGT

2
) → (Σ1 ∪Σε

1 ∪
Θ1) ∪ (Σ2 ∪Σε

2 ∪Θ2) be a renaming. We have [GT
1 ‖GT

2
s→

(q1, q2)]
τ⇒ [T

ρ(s)
−→ q].

Example 5: Consider the system G = {G1, G2} shown in
Fig. 2. In the first step of the compositional approach, the system

is abstracted by applying opaque observation equivalence (see
Example 2). The abstracted system G̃ = {G̃1, G̃2} is shown in
Fig. 2. Next, the TPO of individual components are built. As
explained in Example 4, the TPOs of G̃1 and G̃2 are T ′

1 and T ′
2,

respectively, shown in Fig. 2. Moreover, Fig. 2 also shows GT
1

and GT
2 , the transformed automata of T ′

1 and T ′
2, respectively.

The largest monolithic TPO w.r.t G1 ‖G2 is denoted by T and
is shown in Fig. 3.

In this particular example, it can be verified that the original
and abstracted TPOs are identical (this need not be true in gen-
eral); therefore, T in Fig. 3 also represents the largest TPO w.r.t.
G̃1 ‖ G̃2. In T , we have states A = {(q0, s0)}, B = {(q0, s1),
(q0, s2)},C = {(q1, s0), (q2, s0)},D = {(q1, s1), (q2, s1), (q2,
s2), (q1, s2)}, and E = {(q3, s3)}.

After synchronizing GT
1 with GT

2 , we find that there are some
transitions in Fig. 3, which do not correspond to any transition in
GT

1 ‖GT
2 . For example, no transition in GT

1 ‖GT
2 corresponds

to the zz transition of β from state (A,B,γ) to (B,B,γ) in
Fig. 3.

V. FROM AES CALCULATION TO SUPERVISOR SYNTHESIS

So far, we have shown that in our compositional and
abstraction-based approach, individual components can be ab-
stracted, and each largest TPO w.r.t. an abstracted component
can be calculated individually. Then, we transfer those TPOs
to their automaton forms. After that, we have also shown in
Theorem 9 that the synchronization of the transformed TPOs
results in a subsystem of the largest monolithic TPO up to the
renaming of events.

Recall that the AES is obtained after pruning deadlocking
states from the largest TPO. Here the modular structure of the
transformed TPO is kept and the calculation of a “modular edit
structure” can be done by mapping this problem to a modular
nonblocking supervisory control problem under full observa-
tion.

As was discussed at the end of Section II-C, we pursue an
approach to convert the pruning process (from the largest TPO
to the AES) to a supervisory control problem. In this setting,
the plant is a collection of automata transformed from individ-
ual largest TPOs obtained at the end of step (iv) of CA-AES
algorithm. The specification is the automaton form of the edit
constraint. The constraint of having up to n+ 1 consecutive
erasures can be modeled by a specification automaton with n
states, where transitions are labeled by the decision events and
all states are marked except the last state, which is a blocking
state. After n consecutive event erasures, the next transition
of event erasure α → εα leads the specification forward to
a blocking state. If the next event is a nonerasure event, it
leads the specification back to the initial state, thus resetting the
sequence of erasures. Since we have a modular representation
of the plant, we are able to leverage computationally efficient
compositional techniques for modular nonblocking supervisory
control problems.

Definition 25: Let T = {T1, . . . , Tn} be a TPO sys-
tem, where Ti = 〈Qi

Y , Q
i
Z , Q

i
W ,Σi,Σε

i ,Θ
i,→i

yz,→i
zz,→i

zw,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

3360 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

Fig. 3. Monolithic largest TPO w.r.t. to G1 ‖G2 (also same as that w.r.t. G̃1 ‖ G̃2 in this particular case) in Example 5.

→i
wy, y

i
0〉, and let Φ be the edit constraint on T such that there

are not n+ 1 consecutive event erasures.
Then, K = 〈ΣK , QK ,→K , Q0

K , QK
m〉 is the automaton form

of Φ, where we have the following.
1) QK = {x1, . . . , xn}.

2) →K =
⋃

1≤i≤n−1{(xi,α → εα, xi+1) | p
α→ε−−→zw2

q and E(p)=α} ∪⋃
1≤i≤n−2{(xi+1, εα, x1) | p ε→zw1

q and E(p)=α} ∪⋃
1≤i≤n−2{(xi+1,ασ, x1) |p α→zz

q and E(p)=σ} ∪{(x1, εα, x1) | p ε→zw1 q andE(p) =

α} ∪ {(x1,ασ, x1) | p α→zz q and E(p) = σ}.
3) Q0

K = x1.
4) QK

m = {x1, . . . , xn−1}.
Example 6: Consider the transformed system G T = {GT

1 ,
GT

2 } shown in Fig. 2. Assume the constraint Φ only allows one
erasure. The specification automaton of this constraint is shown
in Fig. 4 as K. Automaton K has three states. As there is no
constraint on event insertion, the events related to event insertion
just form self-loops at the initial state of K. On the other hand,
by executing α → εα, β → εβ, or γ → εγ the specification
transits from x1 to x2. Next, at x2 if the edit decision is to
certain events, then the system goes back to the initial state x1,
thus allowing more event erasures since there are no consecutive
erasures. However, if another event erasure occurs from x2, the
system goes to the blocking state x3.

The following theorem establishes that the TPO of the system
under constraint Φ and the transformed system synchronized
with the specification K have the same runs up to a renaming of
the events.

Theorem 10: Let G = 〈Σ, Q,→, Q0〉 be a nondetermin-
istic automaton with the set of secret states QS ⊆ Q. Let
T ′ = 〈Q′

Y , Q
′
Z , Q

′
W ,Σ,Σε,Θ,→′

yz,→′
zz,→′

zw,→′
wy, y

′
0〉 be

Fig. 4. Automaton K is the automaton form of the constraint Φ in
Example 6; S and SP are the supervisor and the selected path in
Example 7, respectively.

the largest TPO of G under the edit constraint Φ which prohibits
n+ 1 consecutive event erasures.

Let T = 〈QY , QZ , QW ,Σ,Σε,Θ,→yz,→zz,→zw,→wy,
y0〉 be the largest TPO w.r.t. G when no constraint is considered
and let GT = 〈ΣGT , Q,→, Q0〉 be the automaton transforma-
tion of T . Let K be the specification automaton of Φ. Then,

GT ‖K s→ if and only if T ′ ρ(s)−→.
Proof: Clearly, T ′ � T and ΣK ⊆ ΣGT . First, let GT ‖

K
s→ (qG, qK)

σ→ (pG, pK), let PK : ΣGT → ΣK , and let
PE : ΣGT → ⋃

σ∈Σ{σ → εσ ∈ ΣK} be a map that removes
all the events except event erasures from ΣK . From GT ‖K s→
(qG, qK)

σ→ (pG, pK) andΣK ⊆ ΣGT and Definition 2, it holds

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

MOHAJERANI et al.: COMPOSITIONAL AND ABSTRACTION-BASED APPROACH FOR SYNTHESIS OF EDIT FUNCTIONS 3361

that GT s→ qG
σ→ pG and K

PK(s)−→ qK
PK(σ)−→ pK . Now, con-

sider three cases.
1) qK = xi, pK = xi+1 and pK , qK ∈ QK

m. Then,
|PE(s)| < n. This implies that σ is an erasure event,
but there are not n consecutive erasures in s, so

T ′ ρ(s)−→ qT
ρ(σ)−→ pT .

2) qK = xi, pK = xi+1, qK ∈ QK
m but pK �∈ QK

m. Then,

|PE(s)| = n and K
PK(s)−→ qK

σ→ pK , which implies
GT ‖K sσ−→ (pG, pK) and (pG, pK) is a blocking state.
This further indicates there are n consecutive erasures in
s, so T ′ ρ(s)−→ qT−� →.

3) qK = xi, pK = x1 and pK , qK ∈ QK
m. This implies σ is

a nonerasure event, so T ′ ρ(s)−→ qT
ρ(σ)−→ pT .

Now, assume T ′ ρ(s)−→ qT . This means T
ρ(s)−→ qT , which im-

plies GT s→ qT . Consider two cases. 1. |PE(s)| < n. Then,

K
PK(s)−→ qK , which implies GT ‖K s→ (qG, qK). 2. |PE(s)| =

n. This meansT ′ ρ(s)−→ qT−� → andK
PK(s)−→ qK−� →, which implies

GT ‖K s→ (qG, qK)−� →. �
The following theorem shows that equivalent states are re-

moved in solving the supervisory control problem to obtain
an automaton satisfying the edit constraint and in the pruning
process to obtain the AES from the largest TPO.

Theorem 11: Let G = 〈Σ, Q,→, Q0〉 be a nondeterministic
automaton with the set of secret states QS ⊆ Q, and let Φ be the
edit constraint which prohibitsn+ 1 consecutive event erasures.
Let T = 〈QY , QZ , QW ,Σ,Σε,Θ,→yz,→zz,→zw,→wy, y0〉
be the largest TPO w.r.t. G without considering the edit con-
straint and let GT = 〈ΣGT , Q,→, Q0〉 be the the transformed
automaton of T . Let ρ : ΣGT → (Σ1 ∪Σε

1 ∪Θ1) be a renam-
ing and let AES be the all edit structure obtained from T . Let S
be the supremal controllable and nonblocking subautomaton of
GT after considering the specification introduced by Φ. Then,

S
ρ−1(s)−→ q if and only if AES

ρ(s)−→ q.
Formal proof of Theorem 11 can be found in [55]. Theorem 11

proves that when it comes to imposing the edit constraint, the
pruning process from the largest TPO to the AES removes equiv-
alent states with the synthesis procedure of a supremal supervi-
sor. Hence, no information is lost when we apply the supervisory
control approach to enforce the edit constraints and obtain edit
functions. This result is essential to show that the transformation
of the TPO to an equivalent automaton and the constraint Φ
to specification K is correctly done in Definitions 23 and 25,
respectively. The next step is to consider the modular representa-
tion of the system. In that case, we will use the transformation in
Definition 24, which results in a set of automata transformations
of the individual TPOs, with necessary self-loops to capture the
synchronization among the components. Finally, we combine
the results about abstraction and decomposition, which results in
Theorem 12.

Theorem 12: Let G = {G1, . . . , Gn} be a modular nonde-
terministic system with sets of secret states QS

i . Let AES be
the all edit structure of G under constraint Φ. Let det(Gi)
and detd(Gi) be the observer and the desired observer of Gi,
respectively. Let ∼o be an opaque observation equivalence on

Fig. 5. Process of selecting an edit decision from the modular AES.

Gi such that G̃i ∼o Gi for i = 1, . . . , n. Let Hi,ob ≈o det(G̃i)

and Hi,b ≈ det(G̃i) for i = 1, . . . , n, where ≈o and ≈ are
opaque bisimulation and bisimulation, respectively. Let T ′

i be
the largest TPO of detd(Hi,ob) and Hi,b for i = 1, . . . , n with
the event set Σi,T . Let GT

i be the transformed automaton of
T ′
i and K be the automaton specification. Let Pe : Ω → L (G)

be an edit projection and l(ω) be a string generated by run (see
Definitions 14 and 15). Let S be the least restrictive controllable
and nonblocking supervisor calculated from {GT

1 , . . . , G
T
n ,K}

and let ρ : (ΣGT
1
∪ · · · ∪ΣGT

n
) → (Σ1,T ∪ · · · ∪Σn,T) be the

renaming map. Then, [∀s ∈ L (G), ∃t ∈ L (S): Pe(ρ(t)) =
s] ⇒ [l(ρ(t)) = fe(s) where fe ∈ AES].

Proof: The proof follows directly from Theorems 10 and 11,
in combination with Theorem 9. �

Theorem 12 essentially shows the proof for all the steps
shown in Fig. 1. The theorem shows that the CA-AES algorithm
correctly synthesizes edit functions for opacity enforcement in a
modular form; therefore, the algorithm is sound. It also reveals
that the problem of calculating the modular representation of the
AES can be transformed to synthesizing modular supervisors.
The advantage of such a transformation is that we may leverage
various existing approaches for calculating a modular supremal
nonblocking supervisor in the literature; see, e.g., [11], [28],
[29], and [37]. Therefore, we can obtain a modular representa-
tion of the AES, which is noticeably efficient to compute. Then,
we may synchronize individual components in the modular
edit structure, which results in a subsystem of the monolithic
AES. However, as was pointed out in Section IV, some edit
decisions are omitted after the synchronization. In practice, it
is usually desired to retain the modular structure and extract an
edit function from it, much in the same way as a set of modular
supervisors control a plant. The extraction process is explained
next.

Each step of extracting a valid edit decision is described
in Fig. 5. Here, the edit function is an interface between the
system’s output and the outside environment. Assume that the
system outputs event γ; then, the edit function makes an edit
decision for that event, and the edited string will be output to the
external observers.

Specifically, this process contains the following steps.
1) When γ is received by the edit function, all the com-

ponents of the modular edit structure are in states that
correspond to Y states of the AES.

2) At these states, event γ is executed, and states of all the
components in the modular edit structure are updated
simultaneously. After the execution ofγ, each component
of the modular edit structure is at a state that corresponds
to a Z state of the AES.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

3362 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

3) Then, assume that there are multiple transitions defined
out of such a current state, we need to select one common
transition, which corresponds to a specific edit decision
and can be viewed as making a control decision from the
current state.

Note that as the selected transition needs to be accepted by
all the components, thus it may happen spontaneously in all
the components of the system. The solution of the modular
supervisory control problem guarantees the existence of such
a common transition out of the current Z states.

The CA-AES algorithm returns the edited string ρ(σ0 . . .σk)
for event γ when every component of the modular edit structure
reaches a new state corresponding to aY state of the AES. At that
point, the modular edit structure is ready to process the next event
output by the system, and the above steps repeat. Meanwhile, the
algorithm keeps track of the states of the modular edit structure as
its components evolve. Based on Theorem 11, the edited string
ρ(σ0 . . .σk) is accepted by the monolithic AES. This finally
confirms that the extracted edit decision from the modular edit
structure corresponds to a valid edit decision in the monolithic
AES. The above process is illustrated in the following example.

Example 7: Consider the nondeterministic system G =
{G1, G2} shown in Fig. 2. As it was shown in Example 2, the
system can be abstracted using opaque observation equivalence.
After abstraction, the system becomes deterministic, which
means that there is no need to calculate the observers of G1 and
G2. The largest TPOs of G̃1 and G̃2 are T ′

1 and T ′
2, respectively,

shown in Fig. 2. Next, the TPOs are transformed to automata
GT

1 and GT
2 shown in Fig. 2, as explained in Example 4.

Assume that the user adds an edit constraint such that only one
consecutive erasure is allowed as in Example 6. The specification
automaton of this constraint is K, shown in Fig. 4. Due to
this constraint, the Y states (A,D) and (B,E) are considered
undesired states in T , shown in Fig. 3, and they should not
be reached when we synthesize edit functions. Since (A,D)
is not allowed, its successor states (A,D,α), (A,D,α → ε),
and (A,E) become unreachable from the initial state (A,A).
Those three states together with (A,D) and (B,E) are drawn
in dashed lines in Fig. 3 and are to be removed in the next
step. Furthermore, states (B,D,α → ε), (A,C,β → ε), and
(A,B,γ → ε) become deadlocking after (A,D) and (B,E)
are removed. They are drawn in dotted lines in Fig. 3 and are
also to be removed.

Following the compositional approach with supervisor reduc-
tion presented in [29] and [40], we calculate a least restrictive and
nonblocking supervisor for the transformed automaton, which
is shown in Fig. 4 as automaton S. All the paths accepted
by this supervisor represent valid edit decisions. Consider the
accepted pathSP shown in Fig. 4, it corresponds to an edit func-
tion’s decisions for string γβα such that fe(γβα) = γ(γ →
ε)γβεβαγ(α → ε)α, which is shown by thick lines in T ,
Fig. 3. As is seen, ρ(SP) = fe(γβα). Specifically, when event
γ is output by the system, SP returns γ(γ → εγ)(γγ→ε,w),
which means erasing theγ. Next, eventβ is output by the system,
and it is unchanged according to SP . Finally, α is output by
the system and SP returns α(γα)(α → εα)(αα→ε,w), which
means erasing α and inserting γ. Similarly, we may consider

other paths accepted by the supervisor in Fig. 4 to track edit
decisions on other strings; then, we have a complete picture of
how an edit function works.

Remark 4: From the result in Theorem 8, our modular algo-
rithm CA-AES results in fewer edit decisions compared with
the monolithic approach in [20], due to the synchronization
process in Section IV. This indicates that our method may not be
complete in the sense that even if the CA-AES algorithm does not
return any modular form edit functions, the monolithic approach
may still return valid edit functions. This may be viewed as the
tradeoff of reducing computational complexity by the modular
method. �

VI. CONCLUSION

This article investigated a compositional and abstraction-
based approach to synthesize edit functions for opacity enforce-
ment in a modular setting, given a set of individual systems.
The edit functions modify the system’s output by inserting
and erasing events, under the constraint of limited number
of event erasures. The TPO and AES proposed in our prior
work were employed here; these discrete structures embed edit
functions and reflect the constraints. The monolithic approach
first synchronizes all individual systems and then calculates
the monolithic AES to obtain edit functions. In contrast, the
compositional approach first exploits the modular structure and
builds individual TPOs. Then, it incorporates the edit constraint
and calculates the modular edit structure in a nonblocking
modular supervisory control manner to obtain edit functions. In
addition, we also applied abstraction methods to reduce the state
space of the system before opacity enforcement. We showed that
the abstraction processes preserve opacity. Combining system
composition and abstraction, we proposed an efficient approach
to enforce opacity for complex systems containing multiple
components.

REFERENCES

[1] B. Bérard, K. Chatterjee, and N. Sznajder, “Probabilistic opacity for
Markov decision processes,” Inf. Process. Lett., vol. 115, no. 1, pp. 52–59,
2015.

[2] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity gener-
alised to transition systems,” Int. J. Inf. Secur., vol. 7, no. 6, pp. 421–435,
2008.

[3] J. W. Bryans, M. Koutny, and P. Y. A. Ryan, “Modelling opacity using
Petri nets,” Electron. Notes Theor. Comput. Sci., vol. 121, pp. 101–115,
2005.

[4] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. Berlin, Germany: Springer, 2008.

[5] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods Syst. Des., vol. 40, no. 1,
pp. 88–115, 2012.

[6] S. Chédor, C. Morvan, S. Pinchinat, and H. Marchand, “Diagnosis and
opacity problems for infinite state systems modeled by recursive tile
systems,” Discrete Event Dyn. Syst.: Theory Appl., vol. 25, nos. 1/2,
pp. 271–294, 2015.

[7] J. Chen, M. Ibrahim, and R. Kumar, “Quantification of secrecy in partially
observed stochastic discrete event systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 1, pp. 185–195, Jan. 2017.

[8] P. Darondeau, H. Marchand, and L. Ricker, “Enforcing opacity of regular
predicates on modal transition systems,” Discrete Event Dyn. Syst.: Theory
Appl., vol. 25, nos. 1/2, pp. 251–270, 2015.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

MOHAJERANI et al.: COMPOSITIONAL AND ABSTRACTION-BASED APPROACH FOR SYNTHESIS OF EDIT FUNCTIONS 3363

[9] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1089–1100,
May 2010.

[10] Y. Falcone and H. Marchand, “Enforcement and validation (at runtime)
of various notions of opacity,” Discrete Event Dyn. Syst.: Theory Appl.,
vol. 25, no. 4, pp. 531–570, 2015.

[11] L. Feng and W. M. Wonham, “Supervisory control architecture for
discrete-event systems,” IEEE Trans. Autom. Control, vol. 53, no. 6,
pp. 1449–1461, Jul. 2008.

[12] J.-C. Fernandez, “An implementation of an efficient algorithm for bisimu-
lation equivalence,” Sci. Comput. Program., vol. 13, nos. 2/3, pp. 219–236,
1990.

[13] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional synthe-
sis of maximally permissive supervisors using supervision equivalence,”
Discrete Event Dyn. Syst.: Theory Appl., vol. 17, no. 4, pp. 475–504, 2007.

[14] L. Hélouët, H. Marchand, and L. Ricker, “Opacity with powerful at-
tackers,” in Proc. 14th IFAC Int. Workshop Discrete Event Syst., 2018,
pp. 475–482.

[15] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[16] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event sys-
tems opacity: Models, validation, and quantification,” Annu. Rev. Control,
vol. 41, pp. 135–146, 2016.

[17] Y. Ji and S. Lafortune, “Enforcing opacity by publicly known edit func-
tions,” in Proc. 56th IEEE Conf. Decis. Control, 2017, pp. 4866–4871.

[18] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public and
private insertion functions,” Automatica, vol. 93, pp. 369–378, 2018.

[19] Y. Ji, X. Yin, and S. Lafortune, “Enforcing opacity by insertion functions
under multiple energy constraints,” Automatica, vol. 108, 2019, Art. no.
108476.

[20] Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement using nondetermin-
istic publicly-known edit functions,” IEEE Trans. Autom. Control, vol. 64,
no. 10, pp. 4369–4376, Oct. 2019, doi: 10.1109/TAC.2019.2897553.

[21] C. Keroglou and C. N. Hadjicostis, “Probabilistic system opacity in
discrete event systems,” Discrete Event Dyn. Syst.: Theory Appl., vol. 28,
no. 2, pp. 289–314, 2018.

[22] F. Lin, “Opacity of discrete event systems and its applications,” Automat-
ica, vol. 47, no. 3, pp. 496–503, 2011.

[23] R. Malik and R. Leduc, “Compositional nonblocking verification us-
ing generalized nonblocking abstractions,” IEEE Trans. Autom. Control,
vol. 58, no. 8, pp. 1891–1903, Aug. 2013.

[24] T. Masopust and X. Yin, “Complexity of detectability, opacity and A-
diagnosability for modular discrete event systems,” Automatica, vol. 101,
pp. 290–295, 2019.

[25] R. Milner, Communication and Concurrency, vol. 84, New York, NY,
USA: Prentice-Hall, 1989.

[26] S. Mohajerani, Y. Ji, and S. Lafortune, “Efficient synthesis of edit functions
for opacity enforcement using bisimulation-based abstractions,” in Proc.
57th IEEE Conf. Decis. Control, 2018, pp. 3573–3578.

[27] S. Mohajerani and S. Lafortune, “Transforming opacity verification to non-
blocking verification in modular systems,” IEEE Trans. Autom. Control,
p. 1, 2019, doi: 10.1109/TAC.2019.2934708.

[28] S. Mohajerani, R. Malik, and M. Fabian, “A framework for compositional
synthesis of modular nonblocking supervisors,” IEEE Trans. Autom. Con-
trol, vol. 59, no. 1, pp. 150–162, Jan. 2014.

[29] S. Mohajerani, R. Malik, and M. Fabian, “Compositional synthesis of
supervisors in the form of state machines and state maps,” Automatica,
vol. 76, pp. 277–281, 2017.

[30] J. Mullins and M. Yeddes, “Opacity with orwellian observers and intran-
sitive non-interference,” in Proc. 12th IFAC Int. Workshop Discrete Event
Syst., 2014, pp. 344–349.

[31] M. Noori-Hosseini, B. Lennartson, and C. Hadjicostis, “Compositional
visible bisimulation abstraction applied to opacity verification,” in Proc.
14th IFAC Int. Workshop Discrete Event Syst., 2018, pp. 434–441.

[32] J. JMM Rutten, “Automata and coinduction (an exercise in coalgebra),”
in Proc. Int. Conf. Concurrency Theory, 1998, pp. 194–218.

[33] A. Saboori and C. N. Hadjicostis, “Verification of infinite-step opacity and
complexity considerations,” IEEE Trans. Autom. Control, vol. 57, no. 5,
pp. 1265–1269, May 2012.

[34] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Proc. 46th IEEE Conf. Decis. Control, 2007,
pp. 5056–5061.

[35] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Trans. Autom. Control,
vol. 57, no. 5, pp. 1155–1165, May 2012.

[36] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity in
security applications of discrete event systems,” Inf. Sci., vol. 246, pp. 115–
132, 2013.

[37] K. W. Schmidt and J. E. R. Cury, “Efficient abstractions for the supervisory
control of modular discrete event systems,” IEEE Trans. Autom. Control,
vol. 57, no. 12, pp. 3224–3229, Dec. 2012.

[38] C. Seatzu, M. Silva, and J. H. van Schuppen, Control of Discrete-Event
Systems: Automata and Petri Net Perspectives. Berlin, Germany: Springer,
2012.

[39] R. Su, J. H. van Schuppen, and J. E. Rooda, “Model abstraction of non-
deterministic finite-state automata in supervisor synthesis,” IEEE Trans.
Autom. Control, vol. 55, no. 11, pp. 2527–2541, Nov. 2010.

[40] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event sys-
tems,” Discrete Event Dyn. Syst.: Theory Appl., vol. 14, no. 1, pp. 31–53,
2004.

[41] S. Takai and Y. Oka, “A formula for the supremal controllable and opaque
sublanguage arising in supervisory control,” SICE J. Control, Meas., Syst.
Integr., vol. 1, no. 4, pp. 307–311, 2008.

[42] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Decidability of opacity verification
problems in labeled petri net systems,” Automatica, vol. 80, pp. 48–53,
2017.

[43] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Verification of state-based opacity
using Petri nets,” IEEE Trans. Autom. Control, vol. 62, no. 6, pp. 2823–
2837, Jun. 2017.

[44] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event Sys-
tems. Berlin, Germany: Springer, 2019.

[45] B. Wu and H. Lin, “Privacy verification and enforcement via belief
abstraction,” IEEE Control Syst. Lett., vol. 2, no. 4, pp. 815–820, Oct. 2018.

[46] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for en-
forcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, 2014.

[47] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of obfuscation policies to ensure privacy and utility,” J. Autom.
Reason., vol. 60, no. 1, pp. 107–131, 2018.

[48] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,” IEEE
Trans. Autom. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[49] X. Yin and S. Lafortune, “A new approach for the verification of infinite-
step and K-step opacity using two-way observers,” Automatica, vol. 80,
pp. 162–171, 2017.

[50] X. Yin and S. Lafortune, “A general approach for optimizing dynamic
sensor activations for discrete event systems,” Automatica, vol. 105,
pp. 376–383, 2019.

[51] X. Yin and S. Li, “Verification of opacity in networked supervisory control
systems with insecure control channels,” in Proc. 57th IEEE Conf. Decis
Control, 2018, pp. 4851–4856.

[52] X. Yin, Z. Li, W. Wang, and S. Li, “Infinite-step opacity and K-step opacity
of stochastic discrete-event systems,” Automatica, vol. 99, pp. 266–274,
2019.

[53] B. Zhang, S. Shu, and F. Lin, “Maximum information release while
ensuring opacity in discrete event systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 12, no. 3, pp. 1067–1079, Jul. 2015.

[54] K. Zhang, X. Yin, and M. Zamani, “Opacity of nondeterministic transi-
tion systems: A (bi) simulation relation approach,” IEEE Trans. Autom.
Control, p. 1, 2019, doi: 10.1109/TAC.2019.2908726.

[55] S. Mohajerani, Y. Ji, and S. Lafortune, “Compositional and abstraction-
based approach for synthesis of edit functions for opacity enforcement,”
2019, arXiv:1910.00417. [Online]. Available: https://arxiv.org/abs/1910.
00417

Sahar Mohajerani received the B.Sc. degree
in electrical engineering from the Khaje Nasir
Toosi University of Technology, Tehran, Iran, in
2005, and the M.S. degree in systems, control,
and mechatronics and the Ph.D. degree in au-
tomation from the Chalmers University of Tech-
nology, Gothenburg, Sweden, in 2009 and 2015,
respectively.

She worked with Volvo Cars Corporation on
function verification. She is currently a Postdoc-
toral Fellow with the University of Michigan, Ann

Arbor, MI, USA. Her research interests include formal methods for verifi-
cation and synthesis of large discrete event systems and cyber-physical
systems.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TAC.2019.2897553
https://dx.doi.org/10.1109/TAC.2019.2934708
https://dx.doi.org/10.1109/TAC.2019.2908726
https://arxiv.org/abs/1910.00417

3364 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 8, AUGUST 2020

Yiding Ji received the Bachelor of Engineer-
ing degree in electrical engineering from Tianjin
University, Tianjin, China, in 2014, and the Mas-
ter of Science and Ph.D. degrees in electrical
and computer engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2016 and
2019, respectively.

His research interests include theory of dis-
crete event systems, security and privacy in cy-
ber and cyber-physical systems, formal meth-
ods, and game theory.

Dr. Ji is a member of the IEEE Control Systems Society Technical
Committee on Discrete Event Systems.

Stéphane Lafortune (F’99) received the B.Eng.
degree from the École Polytechnique de
Montréal, Montréal, QC, Canada, in 1980, the
M.Eng. degree from McGill University, Montréal,
in 1982, and the Ph.D degree from the Univer-
sity of California at Berkeley, CA, USA, in 1986,
all in electrical engineering.

Since September 1986, he has been with the
University of Michigan, Ann Arbor, MI, USA,
where he is currently a Professor of Electri-
cal Engineering and Computer Science. His re-

search interests are in discrete event systems and include multiple
problem domains: modeling, diagnosis, control, optimization, and ap-
plications to computer and software systems.

Dr. Lafortune received the Presidential Young Investigator Award from
the National Science Foundation in 1990 and the Axelby Outstanding
Paper Award from the Control Systems Society of the IEEE in 1994 (for
a paper coauthored with S.-L. Chung and F. Lin) and in 2001 (for a paper
coauthored with G. Barrett). He became a Fellow of the International
Federation of Automatic Control in 2017.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 29,2020 at 02:09:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

