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Abstract— This work investigates stabilization of discrete
event systems via supervisory control under a series of quanti-
tative constraints. Every event in the system model is weighted
by a vector which represents payoffs of quantitative variables
associated by the event. Multidimensional weight flows are
generated when events occur successively. The supervisor aims
to drive the generated strings to a reach set of target states
to stabilize the system. Meanwhile, the supervisor is also
responsible for regulating the weight flows so as to guarantee
that at each dimension, the average weight every a certain
number of events does not fall below a given threshold. Next,
the formulated supervisory control problem is transformed to a
two-player game between the supervisor and the environment
on a specially defined game structure. Then we specify the
objective of the game and synthesize game winning supervisors,
which turn out to provably solve the proposed problem.

Index Terms— discrete event systems, automata, supervisory
control, stabilization, local average payoffs

I. INTRODUCTION

Supervisory control is a central theme in the context of
discrete event systems (DES). There is a plant under control
and a specification is given to model the desired behavior
of the plant. The supervisor issues control actions to restrict
the behavior of the plant within the specification [3], [27].

Supervisory control theory has been comprehensively dis-
cussed in various DES models, among which automata and
Petri nets are most commonly used. Many mechanisms of
supervisory control have been developed so far: control under
partial observation [31], [32], networked control [24], [35],
decentralized control [13], [30], control of timed DES [21],
[34], learning based control [28], [33], compositional con-
trol [6], [18], robust control [1], [17], online control [15],
[22], supervisory control for DES with nondeterministic
specifications [25], [29], to name a few. The conventional
framework of qualitative supervisory control is also extended
to quantitative settings, where supervisors are designed to
achieve some measures defined over states and transitions.
This topic has drawn considerable attention and been inves-
tigated under various frameworks, see, e.g., [7], [8], [10],
[16], [19], [20], [26] for some recent advances.

Requirement for stability is ubiquitous in control engi-
neering applications. As a motivating example, we consider
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a heating, ventilation and air-conditioning (HVAC) system
which is designed to convey a heat transfer fluid to multiple
air handlers, providing cooling or heating loads in a building.
Ultimately, the system should be controlled to operate stably.
The primary goals of controllers in an HVAC system are two
fold: to drive/stabilize the system to a well functioning mode
and regulate some flows, e.g., air flow and water flow, so as
to maintain the temperature, moisture and air quality in the
conditioned spaces. After the initial phase of fast cooling or
heating, flows should maintain a relatively stable/steady rate
without much fluctuation as operation continues, which is
essential for the safe and smooth operation of the system.
Here the flow rate is defined as the average payload every
a certain number of time unites. The rate should not go
beyond a predefined range so that the HVAC system may
operate safely and smoothly. When there is a potential risk
of violating the range, the controllers should issue commands
to regulate the flows and prevent the violation in advance.

Inspired by the above situation, we investigate supervisory
control for DES stabilization under multiple average payoff
constraints in this paper. We consider a weighted automaton
model where each event is associated with a weight vector to
represent all types of resources or payloads. A predefined set
of target states indicate completion of important tasks and a
system is stable if all its generated strings visit target states
after a finite number of transitions. In addition, a system
is live if it does not terminate after any given number of
events. Supervisors are employed to enforce these properties
when necessary. Moreover, the major task of supervisors is
to guarantee that the average weight (payoff) over a fixed
number of transitions be above a given threshold at each
dimension of the system, thus the flows are also “stable”.
Intuitively, the horizon to evaluate the mean weight may be
interpreted as a “window” that rolls when new events occur.

Next we formulate the problem of supervisory control for
stabilization under stable-flow constraints and solve it in
sequence: the qualitative issues are addressed first, followed
by quantitative ones. At the first phase, we introduce window
information states to compactly encompass necessary infor-
mation on states and local payoffs under control decisions
and observations. Based on this concept, window bipartite
transition system (WBTS) is defined, allowing us to trans-
form the automaton model to a two-player game where the
supervisor plays against the environment. After introducing
the generic definition, we construct the largest WBTS that
only contains stabilizing and live supervisors. At the second
phase, we formulate a Büchi manner game [2] on the largest
WBTS, by taking stable-flow constraints into consideration.
In the end, we leverage well established algorithms to syn-
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thesize winning supervisors from the game and completely
solve the original supervisory control problem.

This work generalizes the framework of stabilization in
DES [14], [23] and is an extension of our prior works [11],
[12] which explore supervisory control under single local
average payoff constraint. In contrast to [11], we propose a
distinct game structure based on window information states
and apply a different game theoretic approach to solve the
problem. The setting of this work also differs from the one
in [12] where supervisory control is studied under partial
observation. Moreover, the problem in [12] is solved under
another game framework, namely, safety game. Therefore,
the method in this work is significantly different and gener-
ally incomparable with the ones in [11], [12]. More recently,
[9] solves an optimal stabilization problem for stochastic
DES under a different framework. Our approach is also
inspired by results in algorithmic game theory, especially
mean payoff games [2], [4]. As far as we know, this work
is the first one to investigate supervisory control for DES
stabilization under multiple local average payoff constraints.

The following sections are organized as follows. Section II
introduces the DES model and some preliminaries of this
work. Section III formulates the stable-flow stabilization
problem. In Section IV, a game theoretic approach is devel-
oped to solve the supervisory control problem of Section III.
Finally we conclude the work in Section V.

II. SYSTEM MODEL

We consider a quantitative discrete event system modeled
by a weighted finite-state automaton:

G = (X ,E, f ,x0,ω)

where X is the finite state space, E is the finite set of events,
f : X ×E → X is the partial transition function, x0 ∈ X is
the initial state and ω : E→ Zk is the k-dimensional weight
function that assigns an integer vector to each event. The
vector reflects payloads or payoffs of quantitative variables
associated with the event. Additionally, we say that G is of
dimension k if ω is a k-dimensional function. Given e ∈ E,
we let ω(i)(e) be the i-th element of ω(e). The domain of f
can be extended to X ×E∗ in the standard manner [3] and
we still denote the extended function by f . The language
generated by G is L (G) = {s∈E∗ : f (x0,s)!} where ! means
“is defined”. The function ω is additive and its domain can be
extended to E∗ by letting ω(ε) = 0, ω(se) = ω(s)+ω(e) for
all s∈ E∗ and e∈ E. We denote by W the maximum absolute
value of event weights in G, i.e., W = max

e∈E
max
1≤i≤k

|ω(i)(e)|.

For simplicity, we write x1
e−→ x2 if f (x1,e) = x2 for some

x1,x2 ∈X and e∈E. A run in G is a finite or infinite sequence
of alternating states and events in the form: r = x1

e1−→ x2
e2−→

·· · en−→ xn+1. A run is called initial if it starts from the initial
state of G. We denote by Run(G) and Runin f (G) the set of
runs and infinite runs in G, respectively. For index 1≤ i≤ n,
we call xi

ei−→ ·· · en−→ xn+1 a suffix of r and x1
e1−→ ·· · ei−→ xi+1 a

prefix of r. In addition, for indexes j and m such that 1≤ j <
m≤ n, we call x j

e j−→ x j+1
e j+1−−→ ·· · em−→ xm+1 a fragment of r,

which is a run by itself. Furthermore, we let r( j,m) stand
for the run fragment starting from x j and ending in xm+1.

A set of states XT ⊆ X is of particular interests and is
termed as the target state set. We call the system stable if
all feasible strings will eventually reach target states. We also
consider the (weak) liveness property: G is live if ∀s∈L (G),
∃u ∈ E, s.t. su ∈L (G), i.e., there is a transition defined out
of any state in G so that every finite run may be extended
to be infinite. Weak liveness is without loss of generality as
it can be relaxed by adding observable self-loops at terminal
states where no active events are defined. When it comes to
“liveness” in the following context, we mean weak liveness.

The system is controlled by a supervisor which dynami-
cally enables and disables events to achieve the given specifi-
cation [3]. Formally, a supervisor is a function S : L (G)→Γ.
The event set E is partitioned as E = Ec ∪Euc, where Ec
and Euc are the set of controllable and uncontrollable events,
respectively. A control decision γ ∈ 2E is admissible if Euc ⊆
γ , i.e., no uncontrollable event is disabled. We only consider
admissible control decisions and let all events be observable
in this work. We use S/G to represent the controlled system
under S. Accordingly, we denote by L (S/G) the language
generated in S/G and Run(S/G) the set of runs in S/G. We
call a supervisor S live if the controlled system S/G is live.

In this work, supervisors are also employed to stabilize
the system. A stabilizing supervisor drives every string in
the supervised system to reach target states eventually.

Definition 1 (Stabilizing Supervisor): Given G and target
states XT , a supervisor S is stabilizing if ∀s ∈L (S/G), ∃t ∈
E∗ and Mt ∈ N+ such that |t| ≥Mt ⇒ f (x0,st) ∈ XT .

Apart from stabilization and liveness, we also consider
quantitative properties of generated weight flows when events
occur consecutively in G. Specifically, we discuss the sta-
bility of weight flows via local average weights (payoffs)
per a limited number of transitions, which differs from the
asymptotic mean weights in [9], [20]. Given a run r = x1

e1−→
x2

e2−→ ·· · en−→ xn+1 in G, its total payoff is ∑
n
i=1 ω(ei) and

average payoff is 1
n ∑

n
i=1 ω(ei). Both types of payoffs are

vectors when G is multidimensional. Given a vector v ∈ Zk,
we also let v(i) be the i-th element in v for 1 ≤ i ≤ k. We
may imagine that local average payoffs are evaluated within
a “window”. The weight flows have less fluctuation and are
therefore more stable when the local average payoffs always
remain in an appropriate range. The window size is fixed as
a positive integer N in the following discussion.

Definition 2 (Stable-Flow Windows): Given G of dimen-
sion k, window size N ∈N+ and threshold v∈Zk, a run x1

e1−→
x2 · · ·

eN−→ xN+1 in G forms an N-step stable-flow window if
∀1≤ j ≤ k, ∃1≤ `≤ N such that 1

` ∑
`
i=1 ω( j)(ei)≥ v( j).

A run is an (N-step) stable-flow window if at any dimen-
sion of G, the local average payoff turns to be no less than a
threshold within at most N events. In other words, if the local
mean payoff at dimension j is below v( j), it should be com-
pensated before the window reaches its end. The inequality
in Definition 2 is the same as 1

` ∑
i=`
i=1(ω

( j)(ei)− v( j)) ≥ 0,
i.e., we may subtract vector v from each event weight vector
and equivalently evaluate whether the mean payoff is above
0 at every dimension. Without loss of generality, we assume
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that v be a zero vector throughout the remainder of the work.
The windows are “sliding” when new events occur. It is

reasonable to require that stable-flow windows appear infinite
often so that weight flows remain stable. When the system
is live and never terminates, it is tolerable that stable-flow
windows begin to appear after the system has been operating
for a while. Then we introduce stable-flow infinite runs.

Definition 3 (Stable-Flow Infinite Runs): Given G of di-
mension k with set of target states XT , window size N ∈N+

and zero vector v ∈ Zk, we say that r = x1
e1−→ x2

e2−→ ·· · ∈
Runin f (G) is a stable-flow infinite run if ∃i ≥ 1 such that
∀ j ≥ i, r( j, j+N) forms a stable-flow window.

Note that we only require that stable-flow windows be
perpetually formed from certain position xi (not necessarily
the initial state) of the run in Definition 3. That is, a stable-
flow infinite run is independent of its finite prefixes. When
there are non stable-flow infinite runs in the system, we apply
supervisory control to address the issue.

III. PROBLEM FORMULATION

In this section, we formulate the key problem to be
studied: supervisory control for DES stabilization under
stable-flow constraints, which aims to design a supervisor
for state and weight flow stabilization. Both qualitative and
quantitative conditions are involved in the problem. Then a
useful property is introduced, which will contribute to the
final solution of the problem.

Problem 1 (Stabilization under Stable-Flow Constraints):
Given system G of dimension k with set of target states XT
and window size N ∈ N+, design a supervisor S such that:
(i) S/G is both stable and live; (ii) any infinite run in S/G
is a stable-flow infinite run.

The scenario in Problem 1 is illustrated in Figure 1, where
the window size is N = 3. The supervisor’s decisions regulate
the local mean payoffs in every dimension of the system
within the local horizon and drive the system to target states.
Within the window, we calculate the average payoff over 1,2
and 3 events to see if the corresponding values are above
or equal to the threshold. When an event happens at the
current state, the horizon rolls one step ahead to the reached
state where the supervisor issues new commands. One open
question is whether we need to evaluate local average payoffs
at every state of a run to determine stable-flow windows.

Fig. 1. State stabilization with local mean payoff constraints

Remark 1: Given a run r = x1
e1−→ x2

e2−→ ·· · , suppose x j
with j ≤ N is the first position where a stable-flow window

is formed at certain dimension m, i.e., ∑
j
i=1 ω(m)(ei)≥ 0 and

∑
j′
i=1 ωma(ei)< 0 for all j′ < j. By some simple derivation,

we know that ∑
j
i= j′ ω(e(m)

i ) ≥ 0 > ∑
j′−1
i=1 ω(m)(ei) holds for

any j′ < j, otherwise it contradicts with x j being the first
place where a stable-flow window is formed. So any run
fragment r( j′, j) also forms a stable-flow window. This
indicates that we are safe to evaluate local average payoffs
from position j, thus skip the positions before j. We call this
observation as inductive property of stable-flow windows,
which is leveraged in the next section to solve Problem 1.

Example 1: We consider a two-dimensional system G in
Figure 2. The event set is partitioned as Ec = {a,b,c} and
Euc = {u1,u2,u3,u4,u5}. The set of target states is XT =
{x3,x6} which are marked in blue. The event weight vectors
are drawn next to the corresponding events in the figure. The
window size is set to be N = 3. Apparently, G is not stable
because of the self-loop at x7, which never reaches XT . In
addition, x6

u4−→ x1
a−→ x4

b−→ x5
u3−→ x6

u4−→ x1
a−→ x4

b−→ x5 · · · is not
a stable-flow infinite run since its fragment x6

u4−→ x1
a−→ x4

b−→
x5 is not a 3-step stable-flow window due to ω(1)(u4) < 0,
ω(2)(u4)< 0, ω(1)(u4a)< 0, ω(2)(u4a)< 0, ω(1)(u4ab)< 0
and ω(2)(u4ab) < 0. Our goal is to solve Problem 1 on G
and this example is used throughout the work.

Fig. 2. The two-dimensional weighted automaton G in Example 1

IV. A GAME APPROACH FOR SUPERVISOR SYNTHESIS

This section presents a game theoretic approach to solve
Problem 1. As an intermediate step, the automaton model
in Section II is first transformed to a two-player game
structure, where the supervisor plays against the system (aka
environment). We introduce window information states as
the building block for the game structure termed window
bipartite transition system (WBTS). Then we formulate a
game with properly defined objectives on a special WBTS.
Finally we analyze the game and synthesize the supervisor’s
winning strategies which in turn correctly solve Problem 1.

A. Window Bipartite Transition System

The critical challenge ahead is to redefine the requirements
of Problem 1 and find a succinct way to incorporate qualita-
tive and quantitative information for the decision making of
players on the game. For this purpose, we have Definition 4.

Definition 4 (Window Information States): Given G of di-
mension k and fixed window size N, a window information
state is a tuple: qw = (x,(cw

1 ,c
l
1),(c

w
2 ,c

l
2), · · · ,(cw

k ,c
l
k)) ∈ X×
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(Z× [0,1, · · · ,N])k where x is a state in G and ∀1 ≤ i ≤ k,
cw

i is the weight sum counter and cl
i is the window length

counter for dimension i, respectively.
We denote by Qwd the set of window information states

whose components include a state from automaton G and
N pairs of “counters”. Given qw ∈ Qwd , we use Sta(qw) to
stand for the state from G, i.e., Sta(qw) = x. Note that there
are exactly k pairs in qw, corresponding to the dimensions
of G. Specifically, for a pair (cw

i ,c
l
i) in qw, cw

i reflects the
current weight sum in dimension i when qw is reached, and cl

i
represents the remaining length of the window to potentially
achieve a nonnegative weight sum in dimension i from qw.
We call that cw

i is paired with cl
i and vise versa. The window

length counter cl
i is no greater than the window size N and

we sill specify the range of weight sum counter cw
i later.

If we augment window information states with con-
trol decisions, we denote by Qa

wd ⊆ Qwd × Γ the set
of augmented window information states. For qaw =
(x,(cw

1 ,c
l
1),(c

w
2 ,c

l
2), · · · ,(cw

k ,c
l
k),γ)∈Qa

wd , we let Is(qaw) and
Ctr(qaw) be the window information state and control de-
cision in qaw, respectively, so that qaw = (Is(qag),Ctr(qaw)).
With a slight abuse of notation, we also denote by Sta(qaw)
the state component from G, i.e., Sta(qaw) = x.

Next we formulate a two-player game between the su-
pervisor and the environment. For this purpose, a game
arena named window bipartite transition system (WBTS)
is introduced to systematically characterize the update of
window information states with control decisions and event
occurrences, after the game is initiated. The generic defini-
tion is given as follows and a special WBTS is constructed
as the basis for solving Problem 1 afterwards.

Definition 5 (Window Bipartite Transition System (WBTS)):
A WBTS with respect to G of dimension k and window
size N is a tuple T = (QY ,QZ ,E,Γ, fyz, fzy,ω,y0) where
• QY ⊆ Qwd is the set of window information states;
• QZ ⊆Qa

wd is the set of augmented window information
states;

• E is the set of events of G;
• Γ is the set of (admissible) control decisions;
• fyz : QY ×Γ→ QZ is the transition function from QY

states to QZ states where for y ∈QY , γ ∈ Γ and z ∈QZ ,
we have fyz(y,γ) = z⇒ z = (y,γ);

• fzy : QZ × E → QY is the transition function
from QZ states to QY states where for
za = (x,(cw

1 ,c
l
1),(c

w
2 ,c

l
2), · · · ,(cw

k ,c
l
k),γ) ∈ QZ , e ∈ E

and y = (x′,(c̃w
1 , c̃

l
1),(c̃

w
2 , c̃

l
2), · · · ,(c̃w

k , c̃
l
k)) ∈ Qg

Y , we
have fzy(z,e) = y if and only if e ∈ γ , x′ = f (x,e) and
one of the following conditions hold:

c̃w
i = 0, c̃l

i = N if cw
i +ω

(i)(e)≥ 0

c̃w
i = cw

i +ω
(i)(e), c̃l

i = cl
i−1 if cw

i +ω
(i)(e)< 0,cl ≥ 1;

c̃w
i = ω

(i)(e), c̃l
i = N−1 if cw

i +ω
(i)(e)< 0,cl = 0;

• ω is the k-dimensional event weight function inherited
from G and labels fzy transitions;

• y0 = (x0,(0,N), · · ·(0,N)) ∈ QY is the initial state.
The supervisor plays from QY states (Y -states for short) by

making control decisions and the environment plays from QZ

states (Z-states for short) by executing enabled events. For
a Y -state y, we denote by CT (y) the set of control decisions
defined at y. In essence, we characterize control decisions
and event occurrences separately by defining these two types
of transitions. Here fyz transitions remember the most recent
(admissible) decisions of the supervisor .

On the other hand, fzy transitions are more involved, which
represent the update of reachable states and accumulative
payoffs within windows under event occurrences. Our goal
is to keep track of the remaining window length before a
nonnegative weight sum is achieved. There are three possible
cases when a newly enabled event e occurs. First, once the
weight sum turns nonnegative (within at most N events) at
dimension i, we reset the i-th sum to 0 and the i-th window
length counter to N, respectively. Then we start counting the
weight sum of a new sequence of events from the current
window information state. Second, if the current weight sum
is still negative and the remaining window length is at least
1 at dimension i, we update the i-th weight counter by
adding the i-th element of the event weight vector ω(e)
and then reduce the i-th window length counter by 1. This
implies that it is still possible to achieve a nonnegative weigh
sum within N events. Third, if the current weight sum is
negative and the remaining window length is 0 at certain
dimension i, we set the i-th weight counter as ω(i)(e) and
set the i-th window length counter to N−1, i.e., we restart
counting both the weight sum and the remaining window
length after the i-th window length counter turns 0 with a
negative i-th weight sum counter. Thus, for a pair of counters
in a state of a WBTS, the minimum value of the weight
counter is −W ·N and the maximum value is W where W
is the maximum absolute value of event weights mentioned
in Section II. Event weight function ω is inherited from
G and labels fzy transitions. Finally, the initial state y0 is
(x0,(0,N),(0,N)) · · ·(0,N)) where all weight counters are set
0 and all length counters are set N before any event occurs.

For a state in a WBTS T , if one of its weight sum counters
is negative while its paired window length counter equals 0,
i.e., the window already reaches its maximum length N, we
call this state undesirable as it implies that an unstable-flow
window is formed. Furthermore, if a state in T contains a
target state of G, we name it a target state of T .

In a WBTS, we call a Y -state y terminal if it has no
successor states. When no active events are defined at Sta(y)
in G, the supervisor is unable to make any control decision
and y is terminal. If a WBTS has no terminal Y -states, we
call it complete. Additionally, a Z-state is called terminal if
no transition is defined out of it as the supervisor disables all
events. Terminal states should be avoided if we are to solve
Problem 1, otherwise the supervised system is not live.

When the supervisor and environment take turns to play,
runs are generated in a WBTS T and a run is of the form r =
y1

γ1−→ z1
e1−→ y2 · · ·

γn−→ zn
en−→ yn+1. We denote by Run(T ) and

Runin f (T ) the set of runs and infinite runs in T , respectively.
We also denote by Runy(T ) (respectively Runz(T )) the set
of runs whose last states are Y -states (respectively Z-states).

Example 2: In Figure 3 we present a window bipartite
transition system with respect to G in Figure 2. Here we
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use rectangular and round to represent Y -states and Z-states,
respectively. Control decisions from γ1 to γ8 label transitions
from Y -states to Z-states, and enabled events label transitions
from Z-states to Y -states. To simplify the graph, we do not
draw event weights and omit pairs of weight and window
length counters in each state.

As is seen, the supervisor has two choices γ1 and γ2 at
Y -state y0. If γ1 is chosen, then Z-state z1 is reached, where
the environment has two choices: a and u1. When event a
occurs from z1, Y -state y1 is reached. Both weight counters
and window length counters are updated when new states
are added. The remaining part of the structure is interpreted
in a similar manner.

Fig. 3. A WBTS for Example 2

Generally, both players make decisions based on their
history of observations and decisions and it is natural to
consider their strategies in a WBTS T . A supervisor’s
strategy (control strategy) in T is defined as πs : Runy(T )→Γ

and an environment’s strategy is defined as πe : Runz(T )→
Eo. Given a control strategy πs and a Y -state y, we define
Run(πs,y,T ) = {y

γ1−→ z1
e1−→ y2 · · ·

γn−1−−→ zn−1
en−1−−→ yn : ∀i <

n,γi = πs(y
γ1−→ z1

e1−→ y2 · · ·
γi−1−−→ zi−1

ei−1−−→ yi)} as the set of
runs starting from y and consistent with πs, i.e., every control
decision in a run r ∈ Run(πs,y) is specified by πs. Since
a control strategy preserves the mechanism of a standard
supervisor in supervisory control theory [3], we will not
distinguish between the terms “supervisor” and “supervisor’s
strategy (control strategy)” in the following discussion. We
denote by πs/G the supervised system under πs and call πs
stabilizing live if πs/G is stabilizing/live.

Roughly speaking, a strategy has memory if the player
makes different decisions when the same state is reached
again, otherwise, it is memoryless. The readers may refer to
[2] for more details concerning the memory of strategies.

It is possible to explicitly “extract” a unique supervisor
from a complete WBTS T if a control decision is specified
at each Y -state of T . This supervisor is denoted ST which

is realized by an automaton GT = (QY ,E,ξ ,y0). We have
ξ : QY ×E → QY as the transition function where ∀y ∈ QY ,
∀e∈ E: ξ (y,e) = fzy( fyz(y,γ),e) if γ is chosen at y and e∈ γ .
y0 is the initial Y -state of T . The language of the supervised
system is L (ST/G) = L (ST ×G) where × is the standard
product operation between automata [3].

In a WBTS T , we recursively define the supervisor’s
attractor with respect to a set of states Q in T :

AttrT
s,0(Q) = Q

AttrT
s,i+1(Q) = {y ∈ QY \AttrT

s,i(Q) : ∃y γ−→ z s.t. z ∈ AttrT
s,i(Q)}

∪{z ∈ QZ \AttrT
s,i(Q) : ∀z e−→ y,y ∈ AttrT

s,i(Q)}
AttrT

s (Q) =
⋃
i≥0

AttrT
s,i(Q) (1)

The above definition indicates that the supervisor is able to
take certain actions to reach AttrT

s,i(Q) from AttrT
s,i+1(Q),

while the environment is forced to enter AttrT
s,i(Q) from

AttrT
s,i+1(Q). Therefore, AttrT

s (Q) returns the largest set of
states where Q is reached for sure by the supervisor within
a finite number of transitions, no matter what strategies
taken by the environment. In other words, it is impossible
for the supervisor to reach Q from states not in AttrT

s (Q).
The environment’s attractor with respect to Q is defined
analogously and denoted by AttrT

e (Q). It is known that the
attractor can be computed in linear time provided the game
graph is finite [2], thus it takes O(n(T )) to compute AttrT

s (Q)
where n(T ) denotes the number of transitions in T .

Given two WBTSs T1 = (Q1
Y ,Q

1
Z ,E,Γ, f 1

yz, f 1
zy,ω

1,y1
0) and

T2 = (Q2
Y ,Q

2
Z ,E,Γ, f 2

yz, f 2
zy,ω

2,y2
0), we say T1 is a subgame

of T2, denoted by T1 v T2, if Q1
Y ⊆ Q2

Y , Q1
Z ⊆ Q2

Z and for
all y ∈ Q1

Y , z ∈ Q1
Z , γ ∈ Γ, e ∈ E, we have f 1

yz(y,γ) = z⇒
f 2
yz(y,γ) = z and f 1

zy(z,e) = y⇒ f 2
zy(z,e) = y. Given a WBTS

T and a set of states Q⊆QY ∪QZ , we denote by T ′ = T � Q
if T ′ v T and Q is the state space of T ′, i.e., the game on T
is restricted to a subgame with states in Q.

Now we are ready to solve Problem 1 in two steps. First
we present Algorithm 1 to construct the biggest complete
WBTS Tb = (Qb

Y ,Q
b
Z ,E,Γ, f b

yz, f b
zy,ω,y0) that encloses only

stabilizing and live supervisors. Here being the biggest is
in the graph merging sense, i.e., for any complete WBTS
T that encloses only stabilizing and live supervisors, we
have T v Tb. By building Tb, we address stabilization and
liveness issues of Problem 1. Then we formulate a game on
Tb by taking stable-flow constraints into consideration and
we postpone the discussion to the next subsection.

Algorithm 1 recursively builds the state space of Tb in
a depth-first search manner following Definition 5. It is an
extension of the algorithm of building the weighted bipartite
transition system in [11], where the major discrepancy lies
in the state space and transition functions. We consider
window information states here and the way of defining
transition functions is different from [11]. In Procedure
Extend, we iteratively add window information states to
track states and accumulative payoffs within windows. We
denote by Qta and Qa

ud the set of target states and undesirable
states, respectively. Notice that only non-terminal Z-states
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Algorithm 1: Build the WBTS for supervisor synthesis
Input : G, N
Output : Tb = (Qb

Y ,Q
b
Z ,E,Γ, f b

yz, f b
zy,ω,y0) w.r.t. G

1 Qb
Y = {y0}, Qb

Z = /0, Qud = /0, Qta = /0;
2 Extend(y0,G,N);
3 while there exist Y -states without successors do
4 remove all such Y -states and their predecessor

Z-states, take the accessible part;
5 denote by Tpre the resulting structure and Q′ta the states

from Qta that remain in Tpre, calculate AttrTpre
s (Q′ta) ;

6 return Tb = Tpre � AttrTpre
s (Q′ta);

Procedure: Extend(y,G,N)
7 for γ ∈ Γ do
8 z = f b

yz(y,γ) by Definition 5;

9 add y
γ−→ z to f b

yz;
10 if y ∈ Qud then
11 Qud = Qud ∪{z};
12 if z /∈ QZ and z is not terminal then
13 QZ = QZ ∪{z};
14 if Sta(z) ∈ XT then
15 Qta = Qta∪{z};
16 for e ∈ γ do
17 y′ = f b

zy(z,e) by Definition 5, write down
y′ as (x′,(c′w1 ,c′l1 ),(c

′w
2 ,c′l2 ), · · · ,(c′wk ,c′lk ))

18 add z e−→ y′ to f b
yz;

19 if y′ /∈ Qb
Y then

20 Qb
Y = Qb

Y ∪{y′};
21 if ∃1≤ i≤ k s.t. c′wi < 0 and

c′li = N then
22 Qud = Qud ∪{y′};
23 Extend(y′,G,N);

are added, so the resulting structure after Extend may entail
terminal Y -states without successors. We prune away such
Y -states as well as their preceding Z-states in line 4, so
that Tpre is complete and supervisors in Tpre are live. After
removal of states, we calculate the supervisor’s attractor with
respect to target states remaining in Tpre and return Tb as the
subgame of Tpre restricted to AttrTpre

s (Q′ta). In this manner,
supervisors in Tb are guaranteed to reach target states Q′ta,
thus stabilizing. Note that it is possible that the initial state y0
is not included in Tb. Then there does not exist a supervisor
that stabilizes G from the initial state, so there is no solution
to Problem 1. We continue our discussion for supervisor
synthesis to resolve Problem 1 if y0 is included in Tb.

Theorem 1: Given G, a control strategy is stabilizing and
live if and only if it is in Tb.

Proof: “Only if”: By contradiction. Suppose a control
strategy (supervisor) πs is stabilizing and live, but it is not in
Tb. There should be a WBTS T such that πs is in T , which
further implies that there exists a run consistent with πs such
that it is not in Tb. If it is the case, the union of T and Tb
is strictly larger than Tb in the graph merging sense, which
contradicts with Tb being the biggest WBTS.

“If”: Given a control strategy πs in Tb and for any infinite
run y1

γ1−→ z1
e1−→ y2

γ2−→ z2
e2−→ ·· · consistent with πs, there

exists n ≥ 1 such that yn ∈ Q′ta and Sta(yn) ∈ XT by Algo-
rithm 1 which involves computing the supervisor’s attractor
with respect to target states. Thus XT is eventually visited
and πs is stabilizing. Besides, πs is also live as every state
in Tb has successors so πs/G never terminates.

Remark 2: Given G of dimension k and window size
N, the state space of Tb is of size O(|X | × ({−W ·
N, · · · ,−1,0,1, · · · ,W} × {0,1, · · ·N})k) + O(|X | × 2|E| ×
({−W · N, · · · ,−1,0,1, · · · ,W} × {0,1, · · ·N})k) = O(|X | ·
2|E| ·N2k ·W k). The first term (respectively second term) on
the left side of the equation represents the maximal possible
number of Y -states (respectively Z-states) in Tb. The range of
weight sum counter values is {−W ·N, · · · ,−1,0,1, · · · ,W}
and comes from the second paragraph after Definition 5.

Example 3: We continue Example 1 and build Tb with
respect to G following Algorithm 1. It turns out that af-
ter procedure Extend and removal of states by the While
loop of Algorithm 1, the intermediate window bipartite
transition system Tpre is exactly the structure in Figure 3.
Two shaded states y10 = (x5,(−1,0),(−2,0)) and z15 =
(x5,(−1,0),(−2,0),γ5) in Figure 3 are undesirable since
their weigh counters are negative and window length coun-
ters are 0 by calculation. Two states y7 and z7 contain a non-
target state x7 from G and it is possible for the supervisor
to reach these two states from y0. Then by calculating the
supervisor’s attractor in line 5 of Algorithm 1 and restricting
Tpre to its subgame, we obtain Tb in Figure 4 where the
supervisor is sure to reach target states of G and stabilize
the system. Note that any control strategy in Tb is also live
as there are no terminal states in Tb.

Fig. 4. Tb for Example 3

B. Game Winning Supervisor Synthesis

We have shown that supervisors in Tb are stabilizing and
live, thus Problem 1 is partially solved. In what follows, we
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consider a game on Tb where the supervisor aims to achieve
the stable-flow window objective and the environment aims
to falsify the objective. Then we prove that winning strategies
of the supervisor result in solutions to Problem 1.

Given a WBTS T , we define stable-flow windows of T in
parallel with their counterparts of G:

Runs f (T ) = {r = y1
γ1−→ z1

e1−→ y2 · · ·
ea

N−→ yN+1 ∈ Run(T ) :

∀1≤ t ≤ k,∃1≤ `≤ N, s.t.
1
`

`

∑
i=1

ω
(t)(ei)≥ 0} (2)

It is obvious that if y1
γ1−→ z1

e1−→ y2
e2−→ ·· · eN−→ yN+1 is a

stable-flow window in T , then Sta(y1)
e1−→ Sta(y2)

e2−→ ·· ·
ea

N−→
Sta(yN+1) is a stable-flow window in G. On the contrary,
y1

γ1−→ z1
e1−→ y2 · · ·

eN−→ yN+1 is called an unstable-flow window
in T if ∃1≤ t ≤ k, ∀1≤ `≤ N, such that ∑

`
i=1 ω(t)(ei)< 0.

Then we consider infinite runs of T and define stable-flow
window objective for both players as:

Ws f (T ) = {r = y1
γ1−→ z1

e1−→ y2 · · · ∈ Runin f (T ) : ∀1≤ t ≤ k,

∃i≥ 1 s.t. ∀ j ≥ i,∃1≤ `≤ N,
1
`

`−1

∑
p=0

ω(e(t)j+p)≥ 0} (3)

Simple observation shows that if infinite run y1
γ1−→ z1

e1−→
y2

γ2−→ ·· · is in Ws f (T ), then Sta(y1)
e1−→ Sta(y2)

e2−→ ·· · is a
stable-flow infinite run in G. The supervisor is said to achieve
Ws f (T ) if there exists a control strategy πs such that any
infinite run consistent with πs is included in Ws f (T ).

We claim that if undesirable states in Tb are not visited
infinitely often under a control strategy, the strategy achieves
Ws f (Tb) and leads to a supervisor satisfying the stable-flow
constraints. Then we leverage results from co-Büchi games
to synthesize supervisors and completely solve Problem 1.

Theorem 2: If a control strategy in Tb does not visit
undesirable states infinitely often, then it achieves Ws f (Tb)
and solves Problem 1.

Proof: Suppose πs is a control strategy in Tb such that
all infinite runs consistent with πs do not contain infinite
undesirable states. Then given such a run r, there exists
a Y -state yi in r such that all Y -states after yi are not
undesirable. Next, we argue that from any Y -state y j with
j ≥ i in r, a stable-flow window is formed every N events,
i.e., a nonnegative weight sum is achieved within the next N
events at every dimension. We apply the inductive property
mentioned at the end of Section III to show this argument.
Assume that ya

j is with cw
t = 0 for some dimension 1 ≤

t ≤ k and ya
j′ is the next state with cw

t = 0 after yg
j . From

Algorithm 1, we know that weight sum counters of the states
in Tb will get reset within at most N event occurrences,
otherwise an undesirable state will be reached. Since the
reset happens immediately after the weight sum counter turns
nonnegative, all suffixes of the run fragment between ya

j
and ya

j j′ has a nonnegative weight sum. Therefore, for all
j < j′′ < j′ and dimension t, a stable-flow window is formed.
Consequently, r is in Ws f (Tb) and the supervisor achieves the
stable-flow window objective. Since πs is already stabilizing
and live by Theorem 1, it solves Problem 1.

Theorem 2 implies that if a supervisor achieves Ws f (Tb)
and solves Problem 1 by “eventually always” visiting desir-
able states. Clearly, this is a co-Büchi objective, which is the
dual of standard Büchi objective [2]. Then we may leverage
the divide and conquer manner algorithm in Section 3.2
of [2] to calculate the (supervisor’s) winning region, a set of
states from which the supervisor achieves Ws f (Tb). The rough
idea for the procedure of computing the supervisor’s winning
region is as follows. We inductively compute increasing over
approximations of the supervisor’s winning region at each
round of iteration, “shrink” the game graph by removing
states not in the last round’s approximation result before the
new iteration, then start a new round of computation. The
approximated winning region is refined at each round and
guaranteed to converge after a finite number of iterations [2].

To this end, we restrict the game on Tb to the supervisor’s
winning region, from which we choose a control decision at
each Y -state and synthesize a strategy that provably solves
Problem 1. Existing algorithms and tools abound for winning
strategy synthesis of Büchi manner games, see, e.g., [5].
Technical details are omitted here and the readers may refer
to [5] for a more comprehensive argument. Finally we extract
a supervisor from the game graph following the argument in
subsection IV-A as a unique decision has been specified at
each Y -state. Notice that the resulting supervisor may have
memory with respect to the state space of G since different
control decisions may be issued at the same state of G
when local average payoffs are considered for the stable-flow
constraints. We end this section with the following example.

Example 4: We continue the discussion in Example 3 to
synthesize a supervisor which completely solves Problem 1.
Using the platform developed in [5], we obtain a winning
strategy of the supervisor, which is indicated by green lines
in Figure 5 and achieves the stable-flow window objective
Ws f (T ). If the supervisor plays this strategy, then it will not
visit the shaded states infinitely often. Finally we follow
the discussion in subsection IV-A and convert the control
strategy to a supervisor S shown in Figure 6 (the states are
renamed to be consistent with G), which is live and stabilizes
the system G in Figure 2 by driving all strings to reach
target states. We may also verify that all infinite runs in S/G
are stable-flow infinite runs since stable-flow windows are
formed every three transitions. The supervisor has memory
as it alternates between enabling and disabling b at state x1.

V. CONCLUSION

We extended our prior results to consider a stabilization
problem by supervisory control, which simultaneously re-
quires multiple local mean payoffs fulfill some given bounds,
for the first time in DES. Based on the concept of window
information states, the stabilization problem was redefined as
a two-player game between the supervisor and the environ-
ment on a specially built window bipartite transition system.
After analyzing the game and defining proper objectives, we
synthesized winning strategies of the supervisor, which were
then converted to solve our proposed problem. For future
work directions, we will explore more efficient representation
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Fig. 5. A winning strategy of the supervisor marked in green lines

Fig. 6. A supervisor solving Problem 1

of the game structure and extend the framework of local
average payoff supervisory control into stochastic settings.
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