
Enforcing Opacity by Publicly Known Edit Functions

Yiding Ji and Stéphane Lafortune

Abstract— This paper extends prior work about the enforce-
ment of opacity by insertion functions and applies a more
general method called edit functions. Based on its observations,
the edit function can insert or erase events to modify the outputs
of the system and obfuscate the outside intruder. In this paper, a
key assumption is that the intruder knows the implementation
of the edit function, which requires the edit function to be
“public-private enforcing”. In order to capture the limitations
of edit functions, state based edit constraints are introduced and
may preclude some originally feasible edit choices, complicating
the enforcement problem. The edit function in this work is
deterministic and the enforcement problem is formulated as
a two-player game between the edit function and the system.
Our goal is to synthesize public-private enforcing edit functions
without violating edit constraints. A new synthesis algorithm is
proposed based on the game structure.

I. INTRODUCTION

Opacity characterizes whether an outside malicious in-
truder can infer the secrets of a given dynamic system. It
has received increasing attention in the literature on security
and privacy since it was first introduced. The intruder is
modeled as a passive outside observer with knowledge of
the system’s structure and it intends to access secrets by ob-
serving system’s outputs. The system is called opaque if for
every behavior induced by a secret (termed secret behavior),
there is another observationally-equivalent behavior that is
not induced by any secret (termed non-secret behavior).

In discrete event systems, various representations of se-
crets have been considered to study opacity, which leads
to different opacity notions. In the context of finite state
automata models, opacity has been formulated in the deter-
ministic setting as: initial-state opacity, current-state opacity,
language-based opacity, K-step opacity, infinite step opacity,
initial-and-final state opacity [10], [11], [15], [21]; opacity
has also been considered in stochastic settings [1], [12].
Also, opacity in infinite state systems is considered in [5].
Other works discuss opacity using Petri net models, such
as [2], [14]. The reader is referred to [9] for a detailed
and comprehensive review of current results from the above
mentioned perspectives.

An important problem is the enforcement of opacity for
a given system [6], [8]. One commonly used approach is
to design a minimally restrictive supervisor [7], [13], which

This work was partially supported by NSF grants CCF-1138860 (Expedi-
tions in Computing project ExCAPE: Expeditions in Computer Augmented
Program Engineering) and CNS-1421122, and by the TerraSwarm Research
Center, one of six centers supported by the STARnet phase of the Focus
Center Research Program (FCRP) a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

Y. Ji and S. Lafortune are with the Department of Electrical
Engineering and Computer Science at the University of Michigan.
{jiyiding;stephane}@umich.edu

can disable undesired behaviors before secrets are disclosed.
The work [20] provides a uniform approach of synthesizing
maximally permissive supervisors from a bipartite transition
system. In [22], the authors discuss opacity enforcement
by supervisory control with maximal information release.
Another popular framework is sensor activation [4], [19],
where dynamic or maximally permissive observers are built.

In contrast to the above approaches, an insertion mecha-
nism is proposed in [16], which inserts fictitious events at
the system’s output to obfuscate the intruder’s observations.
In particular, [17] investigates opacity enforcement under
the assumption that the intruder may or may not know the
implementation of the insertion function. In a more recent
work [18], the authors extend insertion functions to a more
general method called edit functions, which are able to
modify system’s outputs by inserting, erasing or replacing
events. A new concept of utility constraint is defined to
capture the limitations of edit functions.

In this work, we extend the works [17], [18] by consid-
ering Public-Private (PP) enforceability for edit functions.
We assume that the edit function is made public by choice,
or that the intruder uses learning techniques to infer the edit
function. Also, we limit the capabilities of edit functions
to insertion and erasure, since any event replacement is
equivalent to event erasure followed by event insertion.

The main contributions of this paper are as follows.
First, we formally characterize the edit mechanism and
define public-private enforceability, under the framework of
opacity enforcement by edit functions. Then we define edit
constraints in a state-based manner and show how they
restrict edit functions’ behaviors. To capture all possible
choices of edit functions, we construct a bipartite structure
called All Edit Structure (AES) and obtain its reduced
substructure under constraints, denoted as AESc. We show
that PP-enforcing edit functions may not always exist due
to edit constraints. Finally, we propose a new synthesis
algorithm for PP-enforcing edit functions, which is based
on the reachability tree of AESc.

The remaining sections of this paper are organized as
follows. Section II briefly reviews basic notations and in-
troduces the notion of opacity used in this paper. Section III
defines edit functions and formally characterizes the property
of public-and-private enforceability. Section IV presents the
construction procedure of the All Edit Structure and reduces
it under edit constraints. Section V identifies relevant con-
cepts and properties of AES under constraints and builds
its reachability tree. Section VI presents the new synthesis
algorithm with illustrative examples. Finally, Section VII
concludes the paper along with directions for future work.

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2872-6/17/$31.00 ©2017 IEEE 4866

II. OPACITY NOTIONS IN AUTOMATA MODELS

We consider opacity in the framework of finite-state
discrete event systems modeled as finite state automata:
G = (X ,E, f ,X0), where X is the finite set of states, E is the
finite set of events, f is the partial state transition function
f : X ×E → 2X , and X0 ⊆ X is the set of initial states [3].
Specifically, we denote XS ⊂ X as the set of secret states,
which characterizes the system’s secrets. We allow G to be
nondeterministic so that the codomain of f is the power set
of X . The transition function is extended to domain X ×E∗

in the standard manner and we still denote the extended
function by f . Also, we use the notation s � u to denote
that string s is a prefix of string u. The language generated
by G is the set of system behaviors that is defined by
L (G,X0) := {t ∈ E∗ : ∃x ∈ X0, f (x, t) is defined} and from
now on, we denote it as L (G) for short. The system G is
partially observable, hence the event set is partitioned into
an observable set Eo and an unobservable set Euo. Given a
string t ∈ E∗, its observable projection is the output of the
natural projection P : E∗→ E∗o , which is recursively defined
as P(t) = P(t ′e) = P(t ′)P(e) where t ′ ∈ E∗ and e ∈ E. The
projection of an event is P(e) = e if e ∈ Eo and P(e) = ε if
e ∈ Euo∪{ε}, where ε is the empty string.

The intruder is modeled as an observer w.r.t. system G,
denoted by E = (Xe,Eo,δ ,xe0). The standard construction
procedure of building observers can be found in Section 2.5.2
of [3]. The intruder knows the structure of G and observes
the outputs in P[L (G)]. Then, it can combine its knowledge
of G and online observations to infer secrets. Opacity holds if
the intruder can not assert a secret behavior from its estimate
and the system is opaque if for every secret behavior, there
is another observationally-equivalent non-secret behavior.

Definition 1 (Current-State Opacity (CSO)): Given sys-
tem G, projection P, and the set of secret states XS, G is
current state opaque if ∀t ∈ LS := {t ∈ L (G,X0) : ∃x0 ∈
X0, f (x0, t)∩ XS 6= /0}, ∃t ′ ∈ LNS := {t ∈ L (G,X0) : ∃x0 ∈
X0, f (x0, t)∩ (X \XS) 6= /0} such that P(t) = P(t ′).

CSO can be verified by building the corresponding ob-
server automaton and checking whether any observer state
contains solely secret states [9].

III. EDIT MECHANISM FOR OPACITY ENFORCEMENT

In this work, we apply a similar framework as in [18]:
the edit function is an interface between the system and
the outside intruder; it receives the system’s output, inserts
fictitious events or erases observed events, then outputs the
modified strings. We assume that all events in Eo are allowed
to be edited, and the intruder is unable to distinguish between
an inserted event and its genuine counterpart.

A. Edit functions
An edit function is defined as a (potentially partial)

function fe : E∗o ×Eo→ E∗o that outputs a string with edited
events based on the past observed behavior and the current
observed event. Given an observable string seo ∈ P[L (G)],
an edit function is defined such that:

fe(s,eo) =

{
sIeo fe inserts sI before eo

ε fe erases eo

Notice that sI may be ε so that fe can leave the last observed
event intact. Here we see that if the edit function first erases
a certain event and then inserts a different event (upon the
next event occurrence), the effect is equivalent to replacing
an event. So in this work, we only explicitly consider event
insertion and erasure; this makes the exposition simpler.
With a slight abuse of notation, we also define a string
based edit function fe recursively as: fe(ε) = ε and fe(seo) =
fe(s) fe(s,eo). Given G, the modified language output by edit
function fe is denoted by fe(P[L (G)]) = {s̃ ∈ E∗o : ∃s ∈
P[L (G)], fe(s) = s̃}.

B. Private-Public Enforceability

As was mentioned earlier, the key issue in this paper
is that we assume the intruder knows the edit function
employed by the system. Similarly to the case of insertion
functions treated in [17], the edit function should be public-
private enforcing, i.e. admissible, privately safe, and pub-
licly safe. We now explain these properties. Admissibility
is an input property for edit functions: the edit function
fe should be able to modify any string in P[L (G)], i.e.
∀seo ∈ P[L (G)], fe(s,eo) is defined. Private safety is an
output property of edit functions: what the intruder observes
should be consistent with the system’s transition structure.
Besides, every modified output behavior should not lie out
of original non-secret behaviors of the system. Because of
these requirements, every modified output string should be
a string in the safe language Lsa f e, which is the supremal
prefix-closed sublanguage of P(LNS) (defined in Definition 1)
and is calculated by the equation:

Lsa f e = P[L (G)]\ [P[L (G)]\P(LNS)]E∗o

Hereafter, we call a string s ∈ P[L (G)] safe if it is in Lsa f e
and unsafe otherwise, so Lunsa f e = P[L (G)]\Lsa f e. Also, all
the continuations of an unsafe string are unsafe.

Definition 2 (Private Safety): Consider G with P, Lsa f e
and Lunsa f e. An edit function fe is privately safe if ∀s ∈
P[L (G)], fe(s) ∈ Lsa f e; equivalently, fe(P[L (G)])⊆ Lsa f e.

Furthermore, public safety is an output property and the
idea behind it is that no matter what the insertion function
outputs, the output could also have been obtained from a non-
secret string; hence system secrets would not be disclosed,
even if the intruder has knowledge of the implementation of
the edit function.

Definition 3 (Public Safety): Consider G with P, Lsa f e
and Lunsa f e, an edit function fe is publicly safe if
∀s ∈ Lunsa f e,∃t ∈ Lsa f e s.t. fe(t) = fe(s); equivalently,
fe(Lunsa f e)⊆ fe(Lsa f e) or fe(P[L (G)]) = fe(Lsa f e).

Definition 4 (PP-Enforceability): Edit function fe is PP-
enforcing if it is admissible, privately safe, and publicly safe.

It is easy to construct a trivial PP-enforcing edit function,
which erases all the observable events, reducing the whole
language to {ε}. However, this solution does not make too
much sense in practice and it will not be considered as a
feasible solution in this work. Thus we introduce the concept
of edit constraints using a state based binary function that
eliminates certain edit choices.

4867

Definition 5 (Edit Constraint): The edit constraint is a
binary function ϕ : Xe × Xe → {0,1}, a state pair (xd ,x f)
satisfies the edit constraint if ϕ(xd ,s f) = 1.

Edit constraint is a general form of the utility constraint
in [18] and it is specified by requiring that certain state pairs
not appear when we design edit functions. In the remainder
of this paper, we assume that the edit constraints are given
and problem-dependent.

IV. ALL EDIT STRUCTURE UNDER CONSTRAINTS

This section presents the procedure of building the All Edit
Structure under constraints (AESc). The procedure is similar
to that of building the corresponding All Insertion Structures
in [17], [18]. AESc is a bipartite game-like structure (discrete
transition system) between the system and the edit function,
with two sets of states defined as Y and Z states. When
it is the system’s turn to play, a certain observable event
e0 occurs at the current Y -state, which is observed by the
edit function and leads to a Z-state. Then, it is the edit
function’s turn to play and some edit decision is made at
the current Z-state. The outcome of this edit decision will be
observed by the intruder. Also, AESc embeds in its transition
structure all feasible privately enforcing edit functions under
constraints [18].

As in [18], there are three steps in building AESc: (1)
construct the verifier; (2) construct the unfolded verifier;
(3) check the constraints and obtain AESc. In step (1),
we first build the desired estimator E d by deleting all the
states where the secret is revealed from E and taking the
accessible part of it. Here the estimator is just the standard
observer of G and E d generates exactly the safe language
Lsa f e. The transitions in E d are denoted as δd . Next, we
build the feasible estimator E f , which includes all possible
edit choices. We insert a self-loop at each state for every
observable event, unless that self-loop is already defined at
that state in E . We also add an ε transition between two
states as long as there is a transition with an observable
event defined between them. Therefore, the feasible estimator
is defined as E f = (X f ,Eo,δ f o,δ f i,δ f e,Γ,x f 0). Specifically,
we denote δ f = δ f o ∪ δ f i ∪ δ f e, where δ f o includes the
normal transitions; δ f i includes the above-mentioned inserted
self-loop transitions of the form δ f i(x f ,e) = x f ; and δ f e
includes the ε transitions (event erasure transitions) defined
as δ f e(x f ,e→ ε) = x′f if δ f o(x f ,e) = x′f . Here we denote
Eε

o = {e→ ε : e ∈ Eo} as set of event erasures. Finally, we
synchronize E d and E f by a special parallel composition
called verifier parallel composition (cf. [16]), resulting in a
new structure called verifier, which embeds all privately safe
and admissible edit choices. Correspondingly, there are three
types of transitions in the verifier: (1) the normal transitions
fvo; (2) the inserted event transitions fvi; and (3) the erased
event transitions fve.

Definition 6 (Verifier Parallel Composition): The verifier
parallel composition ‖v is a special kind of parallel composi-
tion between automata E d and E f . The verifier is defined as
V = (Xv,Eo,Eε

o , fv,Γv,xv0), where Xv denotes the state space
and three types of transition functions fv = fvo ∪ fvi ∪ fve
are defined: fvo : Xv × Eo → Xv, fvi : Xv × Eo → Xv and

fve : Xv×Eo→ Xv.

V := E d‖vE
f = Ac(Xd×X f ,Eo,Eε

o , fvo, fvi, fve,Γv,(x0,x0))

where Ac stands for the accessible part and Xd , X f denote the
state spaces of E d , E f , respectively. The transition functions
work as follows, where ! stands for “is defined”:

fvo(xv,e) : = (δd(xd ,e),δ f o(x f ,e)), if e ∈ Γ(xd),δ f o(x f ,e))!
fvi(xv,e) : = (δd(xd ,e),x f), if e ∈ Γ(xd),δ f i(x f ,e)!
fve(xv,e) : = (xd ,δ f e(x f ,e→ ε)), if δ f o(x f ,e))!

The first transition corresponds to a normal transition
labeled by e in both E d and E f ; the second transition
corresponds to a normal transition labeled by e in E d and
an inserted self-loop transition also labeled by e in E f ; the
third transition corresponds to an ε transition in E f .

Then we unfold all deterministic edit choices from the
verifier and obtain a game structure between the system
player and the edit function player. This structure is called the
unfolded verifier, denoted by Vu. Its construction procedure,
shown in Algorithm 1, is similar to the procedure of building
Vu in [16]. As required in [17], loops should not be inserted
in building Vu, so that there are only a finite number of edit
choices at each Z state. We define Γuv : Z→ E∗o ∪Eε

o as the
set of edit choices, specially, if we concatenate an edit choice
γ = eo→ ε with eo, then γeo = ε .

Algorithm 1: Build Unfolded Verifier
Input : V = (Xv,Eo,Eε

o , fvo, fvi, fve,Γv,xv0)
Output: Vu = (Y,Z,Eo,Eε

o , fyz, fzy,Γuv,y0)
1 y0 := xv0,Y := {y0};
2 for y := xv =

(
xd ,x f

)
∈ Y that has not been examined

do
3 for e ∈ Eo do
4 if fvo(xv,e) or fve(xv,e) is defined then
5 fyz(y,e) := (y,e);
6 Z := Z∪{(y,e)};

7 for z := (y,e) = (xv,e) = ((xd ,x f),e) ∈ Z that has not
been examined do

8 Γuv(z) = /0;
9 if ∃x′v = (x′d ,x

′
f) ∈ Xv, s.t. ∃si ∈ E∗o ,x

′
v = fvi(xv,si)

and fvo (x′v,e) is defined then
10 fzy(z,si) := fvo(x′v,e);
11 Γuv(z) = Γuv(z)∪{si};
12 Y := Y ∪{ fzy(z,si)};
13 if fve(xv,e) = x′v then
14 fzy(z,e→ ε) = x′v;
15 Γuv(z) = Γuv(z)∪{e→ ε};
16 Y := Y ∪{ fzy(z,e→ ε)};

17 Go back to step 2 and repeat until all accessible part
has been built and return Vu;

After building Vu, we prune away the deadlock Z states
where no outgoing transitions are defined as well as Y
states that do not satisfy the edit constraints. This process
can be interpreted as a supremal controllable sublanguage

4868

calculation and more details can be found in [16]. Then we
obtain AESc in Algorithm 2.

Algorithm 2: Build AESc

Input : Vu = (Y,Z,Eo,Eε
o , fyz, fzy,Γuv,y0)

Output: AESc = (Y,Z,Eo,Eε
o , f c

AES,yz, f c
AES,zy,Γc,y0)

1 Mark all the Y -states in Vu;
2 Let fyz be the set of uncontrollable transitions and fzy

be the set of controllable transitions;
3 Prune away all Y states that do not satisfy the edit

constraints and denote the substructure as Ṽu;
4 Ṽ trim

u := Trim(Ṽu), obtain Lm(Ṽ trim
u)]↑C w.r.t L (Vu) by

following the standard ↑C algorithm;
5 Return the subautomaton that generates [Lm(Ṽ trim

u)]↑C

as the AESc;

V. ANALYSIS OF AES UNDER CONSTRAINTS

In this section, we first define some relevant concepts
for AESc and then exploit its properties. PP-enforcing edit
functions may not always exist even when privately safe
edit functions exist. In order to verify the existence of PP-
enforcing edit functions, we need to build a reachability-tree-
like structure of AESc for further analysis. Since observable
events and edit decisions alternate in the AESc, we define
the concept of run and characterize its generated string.

Definition 7 (Run): A run in AESc is a sequence of alter-
nating states and events. Ω = {ω : ω = 〈y0

e0−→ z0
γ0−→ y1

e1−→
·· ·yn−1

en−1−−→ zn−1
γn−1−−→ yn〉} where n ∈ N, y0 is the initial

state of AESc, ei ∈ Eo, f c
AES,yz(yi,ei) = zi, γi ∈ Γc(zi), s.t.

f c
AES,zy(zi,γi) = yi+1,∀i, 0≤ i < n.

Definition 8 (String Generated by a Run): Given a run
ω = 〈y0

e0−→ z0
γ0−→ y1

e1−→ ·· ·yn−1
en−1−−→ zn−1

γn−1−−→ yn〉, the string
generated by it is defined recursively: l0(ω) = ε , l1(ω) =
l0(ω)γ0e0 · · · , ln(ω) = ln−1(ω)γn−1en−1, and l(ω) = ln(ω).

In order to extract the unedited strings from runs in AESc,
we define edit projection, which removes the edit choices
from runs.

Definition 9 (Edit Projection Pe): Given a run ω = 〈y0
e0−→

z0
s0−→ y1

e1−→ ·· ·yn−1
en−1−−→ zn

sn−1−−→ yn〉, the edit projection Pe
returns the string s = e0e1 · · ·en−1.

For synthesis purposes, one critical problem is whether
PP-enforcing edit functions always exist in any given AESc.
The answer is negative and we provide a counterexample.

Example 1: Let the system G be with Eo = {a,b,c,d},
language L (G) = {dabc,abc,b} and Lunsa f e = {abc,b}. The
edit constraint function ϕ is not explicitly stated here. Let
us suppose it results in only one privately safe edit function
fe, which maps b to ab, abc to dabc, and leaves dabc and
its prefixes intact. However, it turns out that fe(Lunsa f e) =
{dabc,ab} is not a subset of fe(Lsa f e) = {dabc}, so this
edit function is not PP-enforcing and there does not exist a
PP-enforcing edit function.

Proposition 1: Private enforceability does not always im-
ply PP-enforceability under edit constraints.

Then it is natural to ask when there exists a PP-enforcing
edit function in the given AESc. To answer this question,

we need to ensure that every unsafe string shares the same
edited behavior with some safe string. In AESc, one Y state
may appear in multiple runs and different strings may be
edited to the same string. In order to facilitate the following
discussion, we split the states apart and build the reachability
tree of AESc, which is denoted by AESt .1 Its construction
procedure is shown in Algorithm 3.

Algorithm 3: Build Labeled Reachability Tree of AESc

Input: AESc = (Y,Z,Eo,Eε
o , f c

AES,yz, f c
AES,zy,Γc,y0)

Output: AESt = (Yt ,Zt ,Eo,Eε
o , f t

AES,yz, f t
AES,zy,Γt ,y0)

1: Do breadth-first search from y0, view it as the root
state, keep expansion until all the states in AESc are
checked or termination criteria are satisfied;

2: For each new node, i.e. y ∈ Yt or z ∈ Zt , check if
f c
AES,yz(y,eo) or f c

AES,zy(z,γ) is defined at this node;
(1) If f c

AES,yz(y,eo) is not defined, then add y as a leaf
state;

(2) If f c
AES,yz(y,eo) or f c

AES,zy(y,γ) is defined, create a
new node z′ = f c

AES,yz(y,eo) or y′ = f c
AES,zy(z,γ);

(3) If y′ is identical to a node in the path from y0 to
z, terminate expansion and add y′ as a leaf state;

3: For every yt ∈ Yt , specify the run ωt from y0 to yt ;
4: Get the string l(ωt) generated by ωt , take the edit

projection Pe(ωt) to get the original string of ωt , use
(l(ωt),Pe(ωt)) to label yt ;

5: return AESt .

In AESt , states are completely split in terms of state and
string components: every Y state consists of a state pair as
well as a string pair where one is unedited and the other
is edited. In line 2.(1) and 2.(3) of Algorithm 3, since all
runs in AESc terminate in Y states by definition, all the leaf
states of AESt are Y states. In line 2.(3), if one particular
state appears again on the path, it means that a loop is formed
in AESc. There may be an infinite number of strings if there
are loops in the original automaton, however, edit functions
are assumed to be memoryless and always specify the same
edit choice at each information state. So no information is
lost if we only consider edit choices in AESt .

In the reachability tree, some Yt states consist of a secret
state as well as a non-secret state while others consist
of solely non-secret states. Based on this observation, we
partition Yt states in AESt as: (1) Y 1

t = {((yd ,y f),(t,s)) ∈
Yt : t ∈ Lsa f e,s ∈ Lunsa f e}; (2) Y 2

t = {((yd ,y f),(t,s)) ∈ Yt :
t,s ∈ Lsa f e}.

We also define the last preserved Y 2
t state as:

Y 2
l p = {y2

t ∈ Y 2
t : ∃y1

t ∈ Y 1
t ,eo ∈ Eo,γ ∈ Γt , s.t. y1

t =

f t
AES,zy(f t

AES,yz(y
2
t ,eo),γ)}. By definition, last preserved Y 2

t
states contain only safe string components but their successor
states contain unsafe string components. Then we define
Y 1

lea f = Ylea f ∩Y 1
t , Y 2

lea f = Ylea f ∩Y 2
t respectively and collect

unsafe strings appearing in Ylea f as Lu
lea f = {l ∈ Lunsa f e :

1The terminology of reachability tree is from the Petri net literature; it
is employed here as it is well-suited to the construction procedure in this
paper.

4869

∃y1
lea f = ((xd ,x f),(t,s)) ∈ Y 1

lea f , s.t. s = l}. We number
each string in Lu

lea f as l1, l2, · · · ln and each li ∈ Lu
lea f may

appear in multiple leaf states in the tree. Similarly, we
collect safe strings in Ylea f as Ls

lea f = {l ∈ Lsa f e : ∃y2
lea f =

((xd ,x f),(t,s))∈Y 2
lea f , s.t. s= l}. Also, the set of safe strings

in Y 2
l p is defined as: Ls

l p = {l ∈ Lsa f e : ∃y2
l p = ((xd ,x f),(t,s))∈

Y 2
l p, s.t. s = l}. Furthermore, we group Yt states by their

state and string components: (1) Y 1
lea f (l)= {((yd ,y f),(t,s))∈

Y 1
t : s = l ∈ Lu

lea f }; (2) Y 2
lea f (l

′) = {((yd ,y f),(t,s)) ∈ Y 2
t :

s = l′ ∈ Ls
lea f }; (3) Y 2

l p(l
′′) = {((yd ,y f),(t,s)) ∈ Y 2

l p : s =

l′′ ∈ Ls
l p}. Besides, we define Y 2

l = Y 2
lea f ∪Y 2

l p and Y 2
l (l̃) =

{((yd ,y f),(t,s) ∈ Y 2
lea f ∪Y 2

l p : s = l̃ ∈ Ls
l p∪Ls

lea f }.
By the definition of Lsa f e, if an edit function maps a string

s to a safe string t, then all prefixes of s are mapped to some
safe strings. Formally speaking, the following theorem holds
and we can focus on Lu

lea f for synthesis purposes.
Theorem 1: Consider any edit function fe, if s, t ∈ E∗o

satisfy fe(s) = fe(t), then ∀s′ � s,∃t ′ � t, s.t. fe(s′) = fe(t ′).

VI. SYNTHESIS OF PP-ENFORCING EDIT FUNCTIONS

In this section, we address the problems of verifying the
existence of PP-enforcing edit functions and synthesizing
such a function if one exists.

The essence of verifying the existence of a PP-enforcing
edit function is to ensure that every unsafe string in Lu

lea f
shares the same behavior with certain strings in Ls

lea f ∪Ls
l p

under the effect of an edit function. Suppose there are n
strings in Lu

lea f : l1, l2, · · · ln and each set of Y 1
lea f (li) contains

ni states. We pick one leaf state from each set of Y 1
lea f (li)

and form a combination of unsafe strings in AESt . Each
combination is denoted as c1

j = [y1
1 j1 ,y

1
2 j2 , · · · ,y

1
n jn],y

1
i ji ∈

Y 1
lea f (li) 1 ≤ i ≤ n,1 ≤ ji ≤ ni,1 ≤ j ≤ ñ where ñ =

n

∏
i=1

ni is

the total number of combinations of unsafe strings. Similarly,
suppose there are m safe strings in Ls

lea f ∪Ls
l p and each set

of Y 2
l (lq) contains mq states. We pick one state from each

Y 2
l (lq) and form a combination of safe strings in AESt . Each

combination is denoted as c2
k = [y2

1k1
,y2

2k2
, · · · ,y2

mkm
],y2

qkq
∈

Y 2
l (lq), 1≤ q≤m,1≤ kq≤mq,1≤ k≤ m̃ where m̃=

m

∏
q=1

mq is

the total number of combinations of safe strings. Both types
of combinations contain the information of how a string is
edited and thus can be used to evaluate if an edit function
is PP-enforcing. The reason why we also need to consider
Ls

l p is as follows: if an unsafe string has a safe prefix, then
an edit function may erase its unsafe suffix to make it safe.
In order to synthesize a PP-enforcing edit function, we try
to find one PP-enforcing combination pair in AESt , which
determines the existence of PP-enforcing edit functions.

Definition 10 (PP-enforcing combination pair): Given a
combination c1

j of unsafe strings and a combination
c2

k of safe strings, they form a PP-enforcing combina-
tion pair if ∀y1

i ji = ((xobsd1,xobs f 1),(t1,s1)) ∈ c1
j , ∃y2

qkq
=

((x′obsd1,x
′
obs f 1),(t

′
1,s
′
1)) ∈ c2

k , s.t. t1 � t ′1.
Theorem 2: A PP-enforcing edit function exists if and

only if a PP-enforcing combination pair exists in the AESc.

The proof is omitted here and based on this theorem, we
propose the following algorithm to synthesize PP-enforcing
edit functions and give an illustrative example hereafter.

Algorithm 4: Synthesize Deterministic PP-enforcing
Edit Functions

Input : AESt = (Yt ,Zt ,Eo,Eε
o , f t

AES,yz, f t
AES,zy,Γt ,y0)

Output: A deterministic PP-enforcing edit function or
non-existence of such functions

1 Enumerate all possible candidate combinations for
unsafe strings: c1

j = [y1
1 j1 ,y

1
2 j2 , · · · ,y

1
n jn]

2 Enumerate all possible candidate combinations for safe
strings: c2

k = [y2
1k1

,y2
2k2

, · · · ,y2
mkm

].
3 for j = 1 : ñ do
4 Consider c1

j = [y1
1 j1 ,y

1
2 j2 , · · · ,y

1
n jn]

5 for k = 1 : m̃ do
6 if ∃c2

k that forms a PP-enforcing combination
pair with c1

j . then
7 Mark all the states on runs from y0 to states

in c1
j ∪ c2

q.
8 Return the marked substructure as a

PP-enforcing edit function.

9 if No marked substructure is returned then
10 No PP-enforcing edit function exists.

Example 2: In this example, we show the whole process
of synthesizing PP-enforcing edit functions. Suppose G has
observable events Eo = E = {a,b,c,d} and XS = {5}. Since
Eo = E, G coincides with its current state estimator E
in Figure 1. First, we build the desired estimator E d by
removing state 5 from G and taking the accessible part. Then
we build the feasible estimator E f by adding self-loops at
each state and ε transitions along every defined transition.
Then we do the verifier parallel composition to get verifier
V , which is not shown due to space limitations.

Next, we unfold V to obtain Vu and finally obtain AESc
in Figure 2 after pruning away some edit choices under edit
constraints ϕ(2,5) = 0 and ϕ(3,0) = 0. There are two types
of states in AESc: the square Y states where the system
plays and the oval Z states where the edit function plays.
The transitions from Y states are events observed by the
edit function and the events from Z states are choices of the
edit function. The game is initialized at state (0,0) where
events a,b,d are the system’s observable outputs. After a
is observed, the game reaches state ((0,0),a) and the edit
function begins to play and it inserts d before a. Thus the
intruder will observe da. All the transitions in the structure
can be interpreted in a similar manner.

With AESc built, we proceed to the step of building the
reachability tree in Figure 3. There are 3 leaf states in the tree
and 2 of them are Y 1

lea f states, which are indicated by red dash
lines. In this example, Y 1

lea f states are grouped as: Y 1
lea f (bc) =

{((0,0),(dabc,bc)))}, Y 1
lea f (abc) = {((0,0),(dabc,abc))}.

So we get the combination for unsafe strings as c1
1 =

[((0,0),(dabc,bc)),((0,0),(dabc,abc))]. Also, Y 2
lea f states

4870

are grouped as: Y 2
lea f (dabc) = {((0,0),(dabc,dabc))} and

the only Y 2
l p state is Y 2

l p(a) = {((2,4),(da,a))}. So
we get the combination for safe strings as c2

1 =
[((0,0),(dabc,dabc)),((2,4),(da,a))]. Then we consider
these two combinations: since ∃((0,0),(dabc,dabc)) ∈
c2

1, s.t. dabc� dabc, c1
1 and c2

1 form a PP-enforcing combi-
nation pair. So there exists a PP-enforcing edit function fe
in this example, which inserts da every time b occurs from
state 0 and inserts d every time a occurs from state 0.

0

1

4 5

d
a

c
a

b

3b

c

2

b

Fig. 1. Observer of the system

(1,1)

(0,0),d (0,0),a

(3,3)

(2,4),b

d
a

𝜖

𝜖

a
(0,0),b

(3,5)

b
b

𝜖

da

(0,0)

(1,1),a

(2,2)
𝜖

b
(2,2),b

c
(3,3),c

d
(2,4)

𝜖

(3,5),c

𝜖

c

Fig. 2. AES under constraints–AESc

(1,1),(d,d)

(0,0),d (0,0),a						

(3,3),(dab,dab)

(2,4),b

d a
𝜖

a (0,0),b b
b

𝜖
𝜖

da

(0,0)

(1,1),a

(2,2),(da,da)
𝜖

b
(2,2),b

c
(3,3),c

d
(2,4),(da,a)

(0,0),(dabc,dabc)

(3,5),(dab,b)
c

(3,5),c
𝜖

(0,0),(dabc,bc)

(3,5),(dab,ab)

(3,5),c
c

(0,0),(dabc,	abc)

𝜖

𝜖

Fig. 3. Reachability tree labeled with strings

VII. CONCLUSION

This paper extends our prior method of privately safe
enforcing edit functions to public-private enforcing edit func-
tions, which can enforce opacity in a more adverse situation.
We formally characterize PP-enforcing edit functions and
constrain their functionality by introducing edit constraints to
avoid trivial solutions. We further show that edit constraints
may cause the non-existence of PP-enforcing edit functions.
An algorithm is proposed to verify the existence of PP-
enforcing edit functions and synthesize them if they exist. In

future work, it would be of interest to consider other types
of edit functions, such as non-deterministic ones.

REFERENCES

[1] B. Bérard, J. Mullins, and M. Sassolas. Quantifying opacity. Mathe-
matical Structures in Computer Science, 25(Special issue 2):361–403,
2015.

[2] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan. Opacity
generalised to transition systems. International Journal of Information
Security, 7(6):421–435, 2008.

[3] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems – 2nd Edition. Springer, 2008.

[4] F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems
with static and dynamic masks. Formal Methods in System Design,
40(1):88–115, 2012.

[5] S. Chédor, C. Morvan, S. Pinchinat, and H. Marchand. Diagnosis and
opacity problems for infinite state systems modeled by recursive tile
systems. Discrete Event Dynamic Systems: Theory and Applications,
25(1-2):271–294, 2015.

[6] P. Darondeau, H. Marchand, and L. Ricker. Enforcing opacity
of regular predicates on modal transition systems. Discrete Event
Dynamic Systems: Theory and Applications, 25(1-2):251–270, 2015.

[7] J. Dubreil, P. Darondeau, and H. Marchand. Supervisory control for
opacity. IEEE Transactions on Automatic Control, 55(5):1089–1100,
2010.

[8] Y. Falcone and H. Marchand. Enforcement and validation (at runtime)
of various notions of opacity. Discrete Event Dynamic Systems: Theory
and Applications, 25(4):531–570, 2015.

[9] R. Jacob, J.-J. Lesage, and J.-M. Faure. Overview of discrete event
systems opacity: Models, validation, and quantification. Annual
Reviews in Control, 2016.

[10] F. Lin. Opacity of discrete event systems and its applications.
Automatica, 47(3):496–503, 2011.

[11] A. Saboori and C. N. Hadjicostis. Notions of security and opacity in
discrete event systems. Proc. of the 46th IEEE Conference on Decision
and Control, pages 5056–5061, Dec 2007.

[12] A. Saboori and C. N. Hadjicostis. Current-state opacity formulations in
probabilistic finite automata. IEEE Transactions on Automatic Control,
59(1):120–133, 2014.

[13] S. Takai and Y. Oka. A formula for the supremal controllable and
opaque sublanguage arising in supervisory control. SICE Journal of
Control, Measurement, and System Integration, 1(4):307–311, 2008.

[14] Y. Tong, Z. Li, C. Seatzu, and A. Giua. Verification of state-based
opacity using Petri nets. IEEE Transactions on Automatic Control,
62(6):2823–2837, 2017.

[15] Y.-C. Wu. and S. Lafortune. Comparative analysis of related notions
of opacity in centralized and coordinated architectures. Discrete Event
Dynamic Systems: Theory and Applications, 23(3):307–339, 2013.

[16] Y.-C. Wu. and S. Lafortune. Synthesis of insertion functions for
enforcement of opacity security properties. Automatica, 50(5):1336–
1348, 2014.

[17] Y.-C. Wu and S. Lafortune. Synthesis of opacity-enforcing insertion
functions that can be publicly known. In Proceedings of the 54th IEEE
Conference on Decision and Control, pages 3506–3513, 2015.

[18] Y.-C. Wu, V. Raman, S. Lafortune, and S. A. Seshia. Obfuscator
synthesis for privacy and utility. In Proceedings of the 8th NASA
Formal Methods Symposium (NFM), pages 239–248, June 2016.

[19] X. Yin and S. Lafortune. A general approach for solving dynamic
sensor activation problems for a class of properties. In Proceedings of
the 54th IEEE Conference on Decision and Control, pages 3610–3615,
2015.

[20] X. Yin and S. Lafortune. A uniform approach for synthesizing
property-enforcing supervisors for partially-observed discrete-event
systems. IEEE Transactions on Automatic Control, 61(8):2140–2154,
2016.

[21] X. Yin and S. Lafortune. A new approach for the verification of
infinite-step and K-step opacity using two-way observers. Automatica,
80:162–171, 2017.

[22] B. Zhang, S. Shu, and F. Lin. Maximum information release while
ensuring opacity in discrete event systems. IEEE Transactions on
Automation Science and Engineering, 12(3):1067–1079, 2015.

4871

