Three-Dimensional Measurement of the Stretch and Displacement of the Perineum during Labor using Stereophotogrammetry

Jinyong Kim, MS, Lisa Kane Low, PhD, CNM, FACNM, John O. L. DeLancey, MD, and James A. Ashton-Miller, PhD
Department of Mechanical Engineering, School of Nursing, Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, Michigan, USA

Introduction

- Vaginal delivery is the single modifiable risk factor for the levator ani muscle (LA) injury, and then pelvic organ prolapse and urinary incontinence later in lives. (Dietz and Lanzarone, 2003; Kearney et al., 2006)
- However, objective real-time measurements of the pelvic floor deformation during the late 2nd-stage of labor are lacking.
- The specific factors and cascade of events that lead to the LA injury are still unknown.
- Direct verification of biomechanical computer simulations is not possible, so indirect methods are indicated.

Aims

- Present a novel intrapartum measurement system which features objective yet accurate measurements based on computer vision technology.
- Document the details of the movement of the perineal surface deformation during late 2nd-stage of labor.

Methods

Device design
- A pre-calibrated pair of webcams connected to a laptop
- No external power required
- Hospital electrical safety inspection passed
- Recording and analyzing software written in C++ (OpenCV library) and Matlab, respectively.

Intrapartum measurement
- University of Michigan IRB approval obtained
- Two primiparous women (20 & 32 yo)
- Recorded during the entire 2nd-stage
- Device located at the foot of the bed
- Ink-dotted markers placed on the perineum and vulva

Types of measurement
- Anterior-posterior (AP) and lateral (LA) diameters of the vaginal opening
- Perineal surface deformation - Principal stretch magnitude and direction

Types of measurement
- Anterior-posterior (AP) and lateral (LA) diameters of the vaginal opening
- Perineal surface deformation - Principal stretch magnitude and direction
- Spatial resolution of the measurement was adequate

Conclusions

- The ability to measure the changes in complex geometry in real-time should aid efforts to develop strategies to prevent pelvic floor injury.
- Limitations
 - Modest number of subjects participated
 - Rate of stretch ratio was not quantified.
 - Measurement resolution remains to be improved.
- Post-processing of the measurement was required.

Results

Time Course of Diametric Changes (Fig. x)
- Major change concentrated in the final pushing phase
- Diameter changes and the pushing pattern are in phase

Surface Deformation (Fig. x)
- The deformation during the final push is up to twice that of earlier pushes in the 2nd-stage of labor
- Principal stretches are concentrically distributed
- Helpful in differentiating local stretch magnitude and direction
- Spatial resolution of the measurement was adequate

Discussion

- The ability to measure the changes in complex geometry in real-time should aid efforts to develop strategies to prevent pelvic floor injury.
- Limitations
 - Modest number of subjects participated
 - Rate of stretch ratio was not quantified.
 - Measurement resolution remains to be improved.
- Post-processing of the measurement was required.