Thermodynamic and Kinetic Characterization of Folding Mechanisms of CheY Circular Permutants

Tyler Ogden
Brooks Group
Hampshire College

Sequence-dependent folding behavior

Free Energy Landscape Theory

- Folding characterized by free energy minima
- Analyze at T_f to see basins of unfolded and native state

CheY protein

- $(\alpha\beta)_5$
- How do cuts between secondary structures affect folding?
- Inform protein engineering

Hills and Brooks. JMB (2008) 382, 485-495

Three Circular Permutant Systems

CpB2: Cut between residues 35-36

•End of β_2 in N-terminal

CpB3: cut between residues 62-63

•In turn between $\beta_3 \alpha_3$; splits C-terminal and N-terminal

CpB4: cut between residues 77-78

•In turn between $\alpha_3\beta_4$ in C-terminal

The Go-Model

- Residues as C_α 'beads'
- Native contacts:
 - Side-chain side-chain interactions
 - Backbone H-bonds
- Lennard-Jones potential for i j > 2

$$V_{ij} = \epsilon_{ij} \left[13 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 18 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{10} + 4 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$$

Non-native repulsion

$$V_{ij} = \epsilon_{ij} \left[13\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12}\right]$$

• This simple model has been successfully applied to investigate folding mechanisms of several proteins in the past

Karanicolas and Brooks. Prot Sci (2002) 11:2351

Simulation Details

- Thermodynamic Replica Exchange
 - 10,000 exchange cycles (exchange every 20,000 steps)
 - $\overline{-4}$ temperature windows (.87 T_f , .97 T_f , 1.08 T_f , 1.20 T_f)
 - Umbrella bias: 8 rgyr biases spanning 1.0 $R_g^{\ o}$ to 2.0 $R_g^{\ o}$
 - Using gorex.pl from the MMTSB toolset
 - Unbiased data using WHAM

Kinetic

- 48 independent unbiased MD simulations at .87 $T_f \, {\rm for} \, 2 \, {\rm x}$ $10^8 \, {\rm time} \, {\rm steps}$
- Unfolded state obtained from heating to 1.5 T_f
- Time step is 22fs
- Langevin Dynamics

Folding of CheY¹

- N-terminus nucleation
- Frustration in $\alpha_2 \beta_3 \alpha_3 \beta_4$ tetrad
- C-terminus folding is accompanied by loosening of entire structure
- Non-obligate intermediate
 - Structured N-terminus
 - Unstructured C-terminus
- Agrees with experimental results²

¹Hills and Brooks. *JMB* (2008) 382, 485-495 ²Kathuria, Day, Wallace & Matthews. *JMB* (2008) 382, 467-484

Change in T_f

Native State Stability T_f at peak

 T_f CpB2 = 280 K

 $T_f \, \text{CpB3} = 285 \, \text{K}$

 $T_f \text{CpB4} = 287 \text{ K}$

CpB2-Energy Landscape and Folding

CpB4-Energy Landscape and Folding

CpB3 – Energy Landscape and Folding (Major Error in Kinetics)

Conclusions

- Simulations predict cut-dependent folding for a constant amino acid sequence
- Cuts change stability of native state
- Location of intermediate on folding pathway may vary (CpB3)
- Suggests possibility of tuning protein folding pathways

Acknowledgements

- Karunesh Arora (UMICH)
- Charlie (UMICH)
- David Braun (UMICH)
- Ron Hills (UNE)
- John Karanicolas (KU)
- Bob Matthews (UMASS Medical School)

