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Sequence-dependent folding behavior
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 How do cuts between secondary
structures affect folding?

Inform protein engineering

Hills and Brooks. JMB (2008) 382, 485-495




Three Circular Permutant Systems

CpB2: Cut between residues
35-36
*End of B, in N-terminal

CpB3: cut between residues
62-63
*In turn between B;a;;
splits C-terminal and N-
terminal

CpB4: cut between residues
77-78
*In turn between o,B, in C-
terminal




The Go-Model

Residues as C, ‘beads’

Native contacts:
— Side-chain side-chain interactions
— Backbone H-bonds

Lennard-Jones potential fori-j > 2
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Non-native repulsion
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* This simple model has been successfully applied to investigate
folding mechanisms of several proteins in the past
Karanicolas and Brooks. Prot Sci (2002) 11:2351
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Simulation Details

e Thermodynamic - Replica Exchange
— 10,000 exchange cycles (exchange every 20,000 steps)
— 4 temperature windows (.87 T, .97 T, 1.08 T;, 1.20 T )
— Umbrella bias: 8 rgyr biases spanning 1.0R ° to 2.0R °
— Using gorex.pl from the MMTSB toolset
— Unbiased data using WHAM

* Kinetic
— 48 independent unbiased MD simulations at .87 T, for 2 x
108 time steps
— Unfolded state obtained from heating to 1.5 T;
— Time step is 22fs

— Langevin Dynamics




Folding of CheY?

N-terminus nucleation

Frustration in a,B;a,8,
tetrad

C-terminus folding is
accompanied by loosening of
entire structure

Non-obligate intermediate
— Structured N-terminus
— Unstructured C-terminus

Agrees with experimental
results?

1Hills and Brooks. JMB (2008) 382, 485-495
2Kathuria, Day, Wallace & Matthews. JMB
(2008) 382, 467-484
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Change in T;

Native State Stability
*T;at peak

T,CpB2 =280 K

T, CpB3 = 285 K
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T,CpB4 = 287 K
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CpB2-Energy Landscape and
Folding
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CpB4-Energy Landscape and
Folding
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CpB3 — Energy Landscape and
Folding (Major Error in Kinetics)
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Conclusions

Simulations predict cut-dependent folding for
a constant amino acid sequence

Cuts change stability of native state

Location of intermediate on folding pathway
may vary (CpB3)

Suggests possibility of tuning protein folding
pathways
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