Crystals, X-Ray Beams, & the Search for the CTPS-GTP Active Site

Maya Lewin-Berlin Smith Lab Summer 2011

Agenda

What is X-ray Crystallography? Diffracted rays X-ray beam Crystal lattice, Crystallized ~1 A bond lengths molecule 1.033 A wavelength X-ray Film

Unique diffraction pattern

Growing Crystals

768 combinations of temperatures, buffers, salts & precipitants

Choosing Crystals

Before Optimization

X 100 microns

Good crystals:

- Smooth
- Larger than beam
- Single

We collected, cryoprotected & froze 64 crystals.

The X-ray Beam

Magnets accelerate electrons around a kilometer-circumference circular ring.

Electrons accelerate, emitting synchrotron radiation.

The Advanced Photon Source at Argonne lab

The radiation is filtered and focused into a monochromatic, high-powered X-ray beam.

Diffraction Patterns

Factors to look for:

- Round spots
- A complete pattern
- Spots far from the center

- Test shots of 64 crystals
- Collected from 10 crystals:
 Rotate crystal
 180 pictures, 1 degree apart

Electron Density

- Fourier transform
- Phases from past CTPS structure
- Amplitudes from diffracted x-ray intensities

- Make crystals
- Shoot with x-rays
- Analyze diffraction

Context

Proteins GATs Triad **CTPS** Cell **Hydrolyses Hydrolysis Builds** Machinery Glutamine, through CTP catalytic **Transfers** triad **Ammonia**

Nucleotides

Building blocks of DNA, RNA

• CTP, ATP, UTP, GTP

Nucleotides & CTPS

- CTPS synthesizes CTP
- Process requires ATP & UTP
- GTP accelerates hydrolysis

- Gln + ATP + UTP + Mg: CTPS active
- High ATP, CTP, GTP: CTPS inactive
- CTPS active + GTP bound:

glutamine hydrolyzed

3 to 4 times faster

Where does GTP bind?

Why Does This Matter?

CTPS & Cancer

- Active, insensitive CTPS in cancer cells
- GTP accelerates CTP production
- More CTP -> more DNA replication
- Cancer spreads

Potential Drug

- Displace GTP
- Inhibit CTPS
- Slow tumor growth.

CTP Production

Synthetase Domain

Glutaminase Domain

Getting CTPS and GTP to Bind

We combined:

CTPS & GTP with UTP & DON

Why UTP?

May activate CTPS

Why DON?

H₂N OH

- DON = glutamine analogue
- Same binding site
- DON binds permanently, inactivating CTPS

New Reaction

Synthetase Domain Glutaminase Domain

Where is the GTP active site?

UTP

UTP bound in ATP binding site

CTPS preparing for activity?

Where Does GTP Bind?

What Did We Learn?

What Next?

• Same condition, no GTP Is density still there?

Catalytic triad mutation

No glutamine hydrolysis

Thank You!

Smith Lab

University of Michigan Biophysics REU program
Argonne Lab, APS, GM/CA-CAT
National Science Foundation