Microfluidic Patch Clamp Technique for Measuring Membrane Disruption

Elizabeth Gichana Banaszak Holl Group

Overview

- 1. Background
- 2. Motivation
- 3. Data
- 4. Work to be done

An Impressively Brief Background

- Luigi Galvani
 - Realization that electrical phenomena are part of animal physiology
 - **→** Electrophysiology

- 1940's Voltage Clamp measures the ion currents across the membrane of excitable cells
 - Kenneth Stewart Cole
 "pioneer in the application of physical science to biology"
 - George Marmount
- 1970-1980 Patch Clamp
 - Erwin Neher
 - Bert Sakmann

What is a patch clamp?

- "An extremely fine glass pipette with a very small opening [that] is used to make contact with a tiny area, or patch, of the cell's outer membrane." A small amount of suction is applied through the pipette and forms a tight seal.
- Fit the pipette with a highly sensitive electrode to record very minute changes in current produced as ions flow through the clamped channel into the pipette.

Nobel Prize!

- 1991 Nobel Prize in Physiology and Medicine
 - "conclusively proving the existence and function of ion channels."

Hypothesis: Cationic nanoparticles induce the formation and/or growth of nanoscale defects in cell membranes, such as holes, causing cell membrane leakage.

Goal: Measure changes in electrical properties of membrane to infer damage

Importance

- Applications in medicine
 - Drug and gene delivery
 - Viruses
 - Prions
 - Untreatable and fatal!
- Cytotoxicity
 - Nanoparticles

IonFlux

- Traditional Patch Clamp
 - Slow and labor intensive
- Microfluidic Patch Clamp
 - Incredibly quick
 - "microfluidic design to provide automated cell introduction"
 - channel network that connects the wells with a series of tiny channels for cell and compound introduction.
 - pneumatic flow control

What the Literature Says

- There haven't been any measurements of individual nanoscale hole forming events induced by cationic nanoparticles on living cell membranes
- There hasn't been characterization of the time course of the events

Chen et al. Journal of Physical Chemistry 2009

Paper Results

- 1. "Exposure of cells to noncytotoxic levels of cationic nanoparticles results in the formation of defects that enhance conductance through the cellular membrane"
- 2. "These defects can recover over time allowing a decrease in transmembrane conductance toward it's original value."

Hong, et. Al. *Bioconjugate Chemistry 2006*

Cells...

Setup

Data Acquisition, T1

Data Acquisition

Images

Future Work

- Quantify current fluctuations
- How to treat data
- PAMAM Dendrimers
 - Nanoscale drug delivery

Works Cited

- Petit-Zeman, Sophie. "The Nobel Prize in Physiology or Medicine 1991 - Speed Read." Nobelprize.org. Sept.-Oct. 2006. Web. 07 Aug. 2011. http://nobelprize.org/nobel_prizes/medicine/laureates/1991/speedread.html.
- Chen, Jiumei, et. Al..Cationic Nanoparticles Induce Nanoscale Disruption in Living Cell Plasma Membranes. J. Phys. Chem. 2009, 113, 11179-11185
- Molleman, A. (2003). Patch clamping: An introductory guide to patch clamp electrophysiology. New York: J. Wiley
- Hong, Seungpyo, et. Al.. Interaction of Polycationic Polymers with Supported Lipid Bilayers and Cells: Nanoscale Hole Formation and Enhanced Membrane Permeability. *Bioconjugate Chem.* 2006, 17, 728-234
- http://www.bem.fi/book/04/04.htm
- Wikipedia

Acknowledgments

- PI: Dr. Mark Banaszak Holl
- Dr. Bradford Orr
- Dr. Roya Lahiji & Kevin Anderson
- The entire Banaszak Holl Group
- University of Michigan
- NSF

Questions?