Problem 1: Dynamics of Car Platoons

Cars on the road in steady state traffic have a predictable dynamical model that is based on one car following the other. The model is best described by a dynamical model defined as \(\ddot{z}_f = \lambda [\dot{z}_l(t-T) - \dot{z}_f(t-T)] \) where \(\dot{z}_f \) is the velocity of a follower car, \(\dot{z}_l \) is the velocity of a leader car, \(\lambda \) is a constant (with \(\lambda > 0 \)), and \(T \) is a time delay associated with the follower response.

(a) Write a state-space model of the system where the system output is the velocity of cars 2 and 3 and the input is the velocity of car 1. Clearly denote \(A \), \(B \), \(C \), and \(D \). [Hint: Define the state vector as the displacements and velocities of cars 2 and 3 but don’t be afraid to include the time delay, \(T \).]

(b) Write the system in the frequency domain through a Laplace transform of the system.

(c) Write the solution of the system as an analytical expression in the time domain (namely, \(x(t) \) and \(y(t) \)).

(d) If \(T = 0 \) is the system stable? Yes or no and why.

(e) If \(T = 0 \), re-write the analytical expressions for \(x(t) \) and \(y(t) \).

(f) Again with \(T = 0 \), plot the displacements of all three vehicles when the first car slows down exponentially with a rate of 0.1/s (i.e., \(e^{-0.1t} \)) for two cases: \(\lambda = 0.1 \) and \(\lambda = 0.5 \). Assume \(z_1(0) = 0 \) m, \(z_2(0) = -100 \) m, \(z_3(0) = -200 \) m, and \(\dot{z}_1 = \dot{z}_2 = \dot{z}_3 = 25 \) m/s. [Hint: use MATLAB and the \texttt{lsim} command to simulate the system.]

(g) Which \(\lambda \) value (0.1 or 0.5) is more realistic and why?
Problem 2: Building Environmental Systems

You are given a two-room building for which you seek to analyze the thermodynamics of its space (perhaps to design a new HVAC system). Assume the outside ambient temperature of a building is T_a while the interior temperature is T_i for each room (hence, room 1 is T_1). Furthermore, the heat capacity of the interior space of the building is C_1 and C_2 for rooms 1 and 2, respectively. The envelope of the building will conduct heat through based on the thermal resistance of the envelope, R_{wa}. Room 1 is enclosed by three equal sized walls (each with R_{wa}) and one window while room 2 is enclosed by four walls; the window has an area, A_w, and thermal resistance of R_{win}. The solar radiation on room 1 is modeled as energy flux, Φ_s. Assume $C_1 = 100 C^o/J$, $C_2 = 80 C^o/J$, $R_{wa} = 0.01 C^o/J * s$, $R_{win} = 0.1 C^o/J * s$, $A_w = 10 m^2$.

(a) Write an analytical model of the two-room building thermal environment. Write the model in terms of the system output as temperature of room 1 and 2 (i.e., T_1 and T_2).

(b) Is the system linear? Why or why not?

(c) Rewrite the analytical model as a linear time invariant (LTI) state space model.

(d) Given the initial temperature of the interior rooms are both 20^oC and the ambient temperature outside the building is $T_a = 20^oC$, write an analytical expression for the temperature time histories of the two rooms when the solar radiation is a step function with magnitude 0.5. Plot the temperature of each room as a function of time with $t \in [0,10]$.

Problem 3: Tuned Mass Dampers for Structures

One strategy for controlling structures exposed to dynamic lateral loads is the use of tuned mass dampers (TMD). As shown, a structure with mass, m, damping, c, and stiffness, k, has a TMD installed consisting of its own mass, m_p, attached to the structure through a spring with stiffness, k_p, and damper with a damping coefficient of, c_p. The displacement of the structure is y and the relative displacement of the TMD mass (relative to the structure) is y_r. The structure is exposed to a lateral force, $f(t)$. In this problem, assume $m = 20,000$kg, $k = 2.5x10^6$ N/m, $c = 0$ Ns/m, $m_p = 2,000$kg, $k_p = 2.0x10^5$ N/s, and $c_p = 7.2x10^3$ Ns/m.
(a) Write a state space model for the structure for the given input, $f(t)$, and output, $y(t)$.

[Hint: use y and y_r in the state].

(b) Determine the eigenvalues and eigenvectors of the system; identify the poles of the system.

(c) Re-write the state space model with the system decoupled through a transformation of the state.

(d) Determine the response of the system analytically from the first mode (i.e., the first set of conjugated poles with the lowest frequency) when $f(t) = 1\times10^5 e^{-100t}$ and assuming the system is initially at rest.