Instructor: Jerome P. Lynch
jerlynch@umich.edu.

Lectures: Tuesdays and Thursdays, 8:30 - 10:00 am
EECS Building Room 1311

Office Hours: Available upon Request

Website: http://www-personal.umich.edu/~jerlynch/cee572/

Catalog Description:
This course is an introductory course in the fundamentals of dynamics system theory
applied to infrastructure systems including applications in modeling, motoring and
controlling structural, transportation, hydraulic, and electrical grid systems. Linear
systems are emphasized including continuous-time and discrete-time systems but
elementary concepts in nonlinear systems are also presented. Additional topics include
feedback control theory, system identification, and cyber-physical system architectures.

Textbook:
• None required

Optional References (currently on 2-hour reserve at the AAE Library):
• Introduction to Dynamic Systems: Theory, Models, and Applications, David G. Luenberger,
 Wiley, 1979
• Linear Dynamical Systems, John L. Casti, Academic Press, 1987
• Filtering and System Identification: A Least Squares Approach, Michel Verhaegen and Vincent
 Verdult, Cambridge Press, 2007

Course Requirements:
• Regular attendance
• Weekly homework assignments
• Midterm exams (3 exams)

Homework:
Homework will be assigned each Thursday and due the following Thursday in class
(unless otherwise noted). Please note, late homework will not be accepted. You are
allowed to work on the homework in small groups, but you must write up your own
homework to hand in. Homework will often involve MATLAB programming. Homework
will be graded on a scale of 100.

Grading:
Homework 25%, Midterm #1 25%, Midterm #2 25%, and Midterm #3 25%. These
weights are approximate; the right to change them later is reserved (but always to the
benefit of the student).

Prerequisites:
Exposure to linear algebra and matrices. You should have seen the following topics:
matrices and vectors, (introductory) linear algebra and differential equations. Some
preliminary knowledge of MATLAB would be beneficial but not required. Deeper
appreciation for the course would be derived from having taken CEE571: Linear System
Theory