CLASS #22: DISCRETE FOURIER TRANSFORM

OBJECTIVES:
1. SUMMARIZE VARIOUS TRANSFORMS
2. DERIVE DISCRETE FOURIER TRANSFORM (D.F.T.)
3. DESCRIBE APPLICATION OF D.F.T.

OVERVIEW OF TRANSFORM METHODS

- TRANSFORM FROM TIME (t or k) TO FREQUENCY (ω, s, z)

CONTINUOUS - TIME

\[F(s) = \int_{0}^{\infty} f(t) e^{-st} dt \]
\[s = \pm iw \]
\[f(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \]
\[s = \pm i\omega \]

DISCRETE - TIME

\[F(z) = \sum_{k=-\infty}^{\infty} f(k) z^{-k} \]
\[k \rightarrow z \]

DISCRETE FOURIER TRANSFORM

\[z = \cos\theta + i\sin\theta \]
\[z = e^{-i\theta} \]

(C) JEROME P. LYNCH, 2017

\[X(k) = \{ x_1, x_2, \ldots, x_N \} \]

DISCRETE-TIME SAMPLES OF \(x(t) \)

- **FINITE SIZE** "\(N \)"
- \(N \) IS TOTAL \# OF SAMPLES
- \(T \) SAMPLE PERIOD
- \(NT \) IS TOTAL TIME DURATION

ASSUME PERIODICITY OF SIGNAL \(\rightarrow \) APPLY FOURIER SERIES

FOURIER SERIES OF \(x(t) \):

\[
X_c(t) = a_0 + 2 \sum_{k=1}^{\infty} \left(a_k \cos \frac{2\pi k t}{NT} + b_k \sin \frac{2\pi k t}{NT} \right)
\]

\[
a_k = \frac{1}{NT} \int_{0}^{NT} X_c(t) \cos \frac{2\pi k t}{NT} \, dt
\]

\[
b_k = \frac{1}{NT} \int_{0}^{NT} X_c(t) \sin \frac{2\pi k t}{NT} \, dt
\]

\[
a_0 = \frac{1}{NT} \int_{0}^{NT} X_c(t) \, dt
\]

(C) JEROME P. LYNN, 2017
Complex Form:

\[X_k = a_k - ib_k \]

\[= \frac{1}{NT} \int_{0}^{NT} x(t) \left[\cos \frac{2\pi kt}{NT} - i \sin \frac{2\pi kt}{NT} \right] dt \]

\[= \frac{1}{NT} \int_{0}^{NT} x(t) e^{-i \left(\frac{2\pi kt}{NT} \right)} dt \]

- We don't know \(x(t) \) & we only have \(x(t) \)
- Approximate Fourier Series Integral

\[X_k = \frac{1}{NT} \sum_{r=0}^{N-1} x(r) e^{-i \left(\frac{2\pi kr}{NT} \right)} \]

\[X_k = \frac{1}{N} \sum_{r=0}^{N-1} x(r) e^{-i \left(\frac{2\pi r k}{N} \right)} \]

Discrete Fourier Transform

- \(r = \text{Index of Time Quanta} \)
- \(k = \text{Index of Freq. Quanta} \)

- In MATLAB: \(\gg x = \text{fft}(x) \)
- FFT is for Fast Fourier Transform ("Fast" Algorithm) for D.F.T.

Inverse Discrete Fourier Transform:

\[x(r) = \sum_{k=0}^{N-1} X_k e^{i \left(\frac{2\pi kr}{N} \right)} \]

(c) Jerome P. Lynch, 2017
3. Frequency Scale

\[X_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-i \frac{2\pi kn}{N}} \quad \iff \quad X(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) e^{-i\omega t} dt \]

\[\omega_k = \frac{2\pi k}{TN} \]

4. Symmetry Properties

Consider: \(k = l \) \[X_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-i \left(\frac{2\pi nl}{N} \right)} \]

\(k = -l \) \[X_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{i \left(\frac{2\pi nl}{N} \right)} \]

\(k = 1 \) \[X_1 = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-i \left(\frac{2\pi n}{N} \right)} \]

\(k = N-1 \) \[X_{N-1} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-i \left(\frac{2\pi (N-1)n}{N} \right)} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-i \left(\frac{2\pi n}{N} \right)} \]

Conjugate Pairs:

\(X_1^* = X_1 \)

\(X_{N-1}^* = X_1 \)
(5) **Nyquist Frequency**

- For all intensive purposes, information in X_k is unique for $k = 0 \rightarrow \frac{N}{2} - 1$

 $W = 0$

 $W = \frac{2\pi}{NT} \left(\frac{N}{2} - 1 \right)$

 $\approx \frac{\pi}{T}$

- $W_{\text{sampling}} = \frac{2\pi}{T}$

 $W = \frac{\pi}{T} = \text{Nyquist Frequency} = \frac{1}{2} W_{\text{sample}}$

- Can uniquely resolve signal harmonics from 0 (DC) to Nyquist frequency

- Are going from "N" points in time to $N/2$ in freq?
 - No, b/c X_k contains amplitude & phase
 - So $N/2$ unique X_k has N information

- Sample at least 2x highest harmonic if not 3x to 5x

Example:

If $X(t)$ is continuous

Now say $X(t)$ is sampled at W_s

Lose W_4 and higher harmonics

(c) Jerome P. Lynch, 2017
Relation to Z-Transform

\[Z: F(z) = \sum_{n=0}^{\infty} f(n) z^{-n} \]

- Let \(z \) be on unit circle:
 \[z = e^{-i \frac{2\pi k}{N}} \]

\[F(z) = \sum_{n=0}^{N-1} f(n) e^{-i \frac{2\pi n k}{N}} \] (D.F.T.)

- So, DFT is Z-Transform on unit circle
- Explains why we repeat \(x_k \) over and over

As \(k \to \infty \), we keep "looping" on unit circle

(c) Jerome P. Lynch, 2017