CLASS #20: DISCRETE-FOURIER TRANSFORM

OBJECTIVES: 1. SUMMARIZE VARIOUS TRANSFORMS
2. DERIVE DISCRETE FOURIER TRANSFORM (D.F.T.)
3. DESCRIBE APPLICATION OF D.F.T.

1. OVERVIEW OF TRANSFORM METHODS
 - TRANSFORM FROM TIME (t or k) TO FREQUENCY (ω, s, z)

 CONTINUOUS - TIME
 \[F(s) = \int_{-\infty}^{\infty} f(t) e^{-st} \, dt \]
 \[s = \pm \omega i \]
 \[f(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt \]

 DISCRETE - TIME
 \[F(z) = \sum_{k=-\infty}^{\infty} f(k) z^{-k} \]
 \[k \rightarrow z \]

 DISCRETE FOURIER TRANSFORM
 \[k \rightarrow \omega \]

 LHP [STABILITY REGION]
 \[Re(s) \]
 \[Im(s) \]

 SLICE THROUGH \(F(s) \) AT \(s = \pm \omega i \)

 UNIT CIRCLE [STABILITY REGION]
 \[z = \cos \theta + i \sin \theta \]
 \[= e^{-i\theta} \]
2 DISCRETE FOURIER TRANSFORM

\[X(k) = \{ x_1, x_2, \ldots, x_n \} \quad \text{DISCRETE-TIME SAMPLES of } X_c(t) \]

FINITE SIZE "N"

- \(N \) IS TOTAL # OF SAMPLES
- \(T \) SAMPLING PERIOD
- \(NT \) IS TOTAL TIME DURATION

ASSUME PERIODICITY OF SIGNAL → APPLY FOURIER SERIES

FOURIER SERIES OF \(X_c(t) \):

\[X_c(t) = a_0 + 2 \sum_{k=1}^{\infty} \left(a_k \cos \frac{2\pi k t}{NT} + b_k \sin \frac{2\pi k t}{NT} \right) \]

\[b_k = \frac{1}{NT} \int_{0}^{NT} X_c(t) \sin \frac{2\pi k t}{NT} \, dt \]

\[a_k = \frac{1}{NT} \int_{0}^{NT} X_c(t) \cos \frac{2\pi k t}{NT} \, dt \]

\[a_0 = \frac{1}{NT} \int_{0}^{NT} X_c(t) \, dt \]
In complex form:

\[X_k = a_k - ib_k \]

\[= \frac{1}{NT} \int_0^{NT} X_e(t) \left[\cos \frac{2\pi k t}{NT} - i \sin \frac{2\pi k t}{NT} \right] dt \]

\[= \frac{1}{NT} \int_0^{NT} X_e(t) e^{-i \left(\frac{2\pi k t}{NT} \right)} dt \]

- We don't know \(X_e(t) \) & we only have \(X(t) \)
- Approximate Fourier Series Integral

\[X_k = \frac{1}{NT} \sum_{r=0}^{N-1} X(r) e^{-i \left(\frac{2\pi k r T}{NT} \right)} \]

Discrete Fourier Transform

- \(r \) = Index of time quanta
- \(k \) = Index of freq. quanta

- In MATLAB: \(\rightarrow X = \text{fft}(X) \)
- FFT is for fast Fourier transform ("fast" algorithm for D.F.T.)

- Inverse Discrete Fourier Transform:

\[X(t) = \sum_{k=0}^{N-1} X_k e^{i \left(\frac{2\pi k r}{N} \right)} \]
3. Frequency Scale

\[X_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-j \frac{2\pi nk}{N}} \leftrightarrow X(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) e^{-j\omega t} \, dt \]

\[\omega_k = \frac{2\pi k}{NT} \]

4. Symmetry Properties

Consider: \(k = l \) \(\rightarrow \) \(X_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-j \frac{2\pi kl}{N}} \)

\(k = -l \) \(\rightarrow \) \(X_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{j \frac{2\pi kl}{N}} \)

\(k = 1 \) \(\rightarrow \) \(X_1 = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-j \frac{2\pi n}{N}} \)

\(k = N-1 \) \(\rightarrow \) \[X_{N-1} = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-j \frac{2\pi (N-1)n}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{j \frac{2\pi n}{N}} \]

\(X_1 = X_1^* \)

\(X_{N-1} = X_1^* \)
- **Nyquist Frequency**

For all intensive purposes, information in \(X_k \) is unique for \(k = 0 \rightarrow \frac{N}{2} - 1 \)

\[
W = \frac{2\pi}{NT} (\frac{N}{2} - 1) = \frac{\pi}{T} - \frac{2\pi}{NT} = \frac{(\pi - 2\pi/N)}{T} \approx \frac{\pi}{T}
\]

- \(W_{\text{Sampling}} = \frac{2\pi}{T} \)

\(W = \frac{\pi}{T} = \text{Nyquist Frequency} = \frac{1}{2} W_{\text{Sample}} \)

- Can uniquely resolve signal harmonics from 0 (DC) to Nyquist frequency

- Are going from "N" points in time to \(N/2 \) in freq?
 - No, b/c \(X_k \) contains amplitude \& phase
 - So \(\frac{N}{2} \) unique \(X_k \) has \(N \) information

- Sample at least 2\(\times \) highest harmonic if not 3\(\times \) to 5\(\times \)

Example:

If \(X(t) \) is continuous

\[
X(w)
\]

Now say \(X(t) \) is sampled at \(W_s \)

\[
\frac{-W_s}{2} \rightarrow 0 \rightarrow \frac{W_s}{2} \rightarrow W_s
\]

\(W_s \), lose \(W_4 \) and higher harmonics
6. **RELATION TO Z-TRANSFORM**

\[F(z) = \sum_{n=-\infty}^{\infty} f(n) z^{-n} \]

- Let \(z \) be on unit circle:
 \[z = e^{-i \frac{2\pi k}{N}} \]

\[F(z) = \sum_{n=-\infty}^{\infty} f(n) e^{-i \frac{2\pi n k}{N}} \quad \text{(D.F.T.)} \]

- So, DFT is Z-transform on unit circle
- Explains why we repeat \(x_k \) over and over

As \(k \to \infty \), we keep "looping" on unit circle