SENSORS #2: ANALOG INTERFACE CIRCUITS

READ: CH 5 (FRADEN)

OBJ: ① MOTIVATION FOR INTERFACE CIRCUITS ② DESCRIBE COMMON INTERFACE CIRCUITS

① HOW SENSORS INTERFACE TO DATA ACQUISITION SYSTEMS:
- OFTEN YOU CAN'T JUST ATTACH A SENSOR TO A DATA ACQUISITION SYSTEM
- "RAW" SENSOR OUTPUTS
 - NOISY CORRUPTION
 - WEAK SIGNAL
 - UNDESIRABLE COMPONENTS
 - INCOMPATIBLE WITH DATA ACQ. REQUIREMENTS

③ IMPEDANCE:
- INPUT IMPEDANCE → HOW MUCH DOES INTERFACE CIRCUIT LOAD THE SENSOR

(c) JEROME P. LYNCH, 2013
- A lot of times, interface circuit has resistance & capacitance

\[Z_{\text{in}} = \frac{R}{1 + j\omega RC} \]

- If \(\omega \) is small, then \(Z_{\text{in}} \approx R \) \((RC \ll \frac{1}{\omega}) \)

- Also need to consider sensor output impedance

\[V_{\text{in}} = V_{\text{out}} = V_s \frac{Z_{\text{in}}}{Z_{\text{in}} + Z_{\text{out}}} \]

3. Amplifiers

- Used to "amplify" sensors with weak outputs (\(V_{\text{in}} \leq I \))

- Scale sensor output to data acquisition system

- Built from op-amps (could be made from discrete elements (transistors, diodes, \(R, C, L \)))

\[V_{\text{out}} = A_{\text{OL}} V_{\text{in}} \]

- \(A_{\text{OL}} \) - dependent on frequency, temperature, load resistance, etc.
A) Non-Inverting Amplifier

\[V_{out} = \left(1 + \frac{R_2}{R_1}\right) V_{in} \]

- Limited by Gain-Bandwidth, \(f_1 \) (Freq above which Op-Amp can not amplify)
- Open Loop Gain (A_{OL}) should be \(> 100 \times \text{Gain at } f_1 \) (Accurate)
 \(> 1000 \times \text{Gain at } f_1 \) (High Accuracy)
- Consider Bias & Offset Voltages (These will get Amp'ed)

B) Voltage Follower

- Gain \(= 1 \)
- High Current Gain

- Used for “Impedance” Conversion from High to Low (Low Resist)
 Impedance
- Current Converter (Boosts Current)
- Widely Used as Buffer to Data Acquisition System

(c) Jerome P. Lynch, 2013
C) INSTRUMENTATION AMPLIFIER:

- Some sensors output a differential voltage (ΔV)
 e.g. strain gage bridge
 - Stand-alone or assembled from 3 op-amps

\[
V_0 = \Delta V \left(1 + \frac{2R}{R_a}\right) \frac{R_3}{R_2}
\]

From 3rd op-amp

D) BRIDGE CIRCUIT:

- Wheatstone bridge: used to convert ΔR to ΔV
 - Resistive sensors require

\[
V_{\text{out}} = \left(\frac{R_2}{R_1+R_2} - \frac{R_4}{R_3+R_4}\right)V_{\text{ref}}
\]
E) Filters:

- Selectively alter signal in frequency domain
 - Let some frequencies through & not others

- Based on Fourier Analysis

- 4 Major Filters:
 A) Low Pass
 B) High Pass
 C) Band Pass
 D) Notch

- Can be built from
 A) Passive (R, L, C)
 B) Active (op-amps)
Passive Filters

Low Pass:

\[V_{in} \quad R \quad C \quad V_{out} \quad f_c = \frac{1}{2\pi RC} \]

High Pass:

\[V_{in} \quad C \quad R \quad V_{out} \quad f_c = \frac{1}{2\pi RC} \]

Active Filters

Commonly used for Low Pass: Butterworth, Bessel, Chebyshev

Butterworth ("4-Pole"):

\[C_1 = 2.613 \text{F} \]
\[C_2 = 0.924 \text{F} \]
\[c_2 = 0.8825 \text{ F} \]

\[V_{in} \quad 1\Omega \quad 1\Omega \quad V_{out} \]

(C) Jerome P. Lynch, 2013