CLASS #1: ELECTRIC CIRCUIT VARIABLES

READ: DORF CHAPTER 1

OBJECTIVES: 1) DEFINE VOLTAGE & CURRENT
2) CALCULATE POWER & ENERGY OF CIRCUITS

1) DEFINE CIRCUITS & ELECTRICITY

- ELECTRICITY IS THE MOVEMENT OF ENERGY
- CIRCUITS ARE A PHYSICAL SYSTEM WITHIN WHICH ENERGY (ELECTRICAL) MOVES
 - CONSISTS OF CIRCUIT ELEMENTS
 - PATHWAYS (WIRES) FOR FLOW OF ELECTRICITY FROM ELEMENT TO ELEMENT

2) EXAMPLE: FLASHLIGHT

- BATTERY HOLDS ENERGY (ELECTRICAL)
- WIRE/TRACE
- LIGHT BULB RADIATES LIGHT ENERGY

BATTERY & LIGHT BULB ARE CIRCUIT ELEMENTS

3) CURRENT:

- CONSISTS OF A CHARGE PARTICULAR MOVING
- TYPICALLY AN ELECTRON (e⁻)

\[q_{\text{electron}} = -1.602 \times 10^{-19} \text{ C (Coulomb)} \]

- CURRENT IS RATE OF CHANGE OF CHARGE PAST A POINT:

\[I = \frac{dq}{dt} \]

(COULOMB/SEC = AMPERE OR A)

(C) JEROME P. LYNCH, 2012
PHYSICAL MOTION OF ELECTRONS
\[e^- \rightarrow e^- \rightarrow e^- \rightarrow \cdots \]

\[i = \frac{dq}{dt} \] CURRENT

CONVENTION:
- CURRENT IS OPPOSITE FLOW OF ELECTRONS
- CURRENT IS FLOW OF POSITIVE CHARGE
- FROM BENJAMIN FRANKLIN

IF \(i \) IS CONSTANT \(\rightarrow \) DIRECT CURRENT (DC)

\[i \]

-WIDELY USED IN CIRCUITS

IF \(i \) IS SINUSODAL \(\rightarrow \) ALTERNATING CURRENT (AC)

\[i \]

-WIDELY USED FOR ELECTRICITY DISTRIBUTION (E.G. TRANSMISSION LINES)

SEE "WAR OF CURRENTS" - EDISON VS. WESTINGHOUSE (AC)

ACUMULATED CHARGE:
\[q = \int_{t_1}^{t_2} i \, dt \]

(C) JEROME P. LYNCH, 2012
4. **Voltage**:
- Energy required to induce charge movement
- Magnitude and direction (polarity)

\[V_{ab} \]

\[V = \frac{dW}{dq} \]

- \(V \) = Voltage (Joules or J)
- \(q \) = Charge (C)
- \(V \) = Volts (\(\frac{J}{C} \) or V)

5. **Power**
- Power is the rate of expending or absorbing energy

\[p = \frac{dW}{dt} \]

\[J/s \text{ or Watts, W} \]

- Consider chain rule:

\[p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = V \cdot I \]

\[p = V \cdot I \]

\[V_{ab} \]

\[\text{Power supplied by element is} \]

\[V_{ab} \cdot I \]

(c) Jerome P. Lynch, 2012
POWER ABSORBED BY ELEMENT
\[\frac{1}{V_{ab}} \cdot i \]

\section*{Example: Flash Light}

[Diagram of a flash light circuit]

\section*{Example:}

\begin{equation*}
 i(t) = \begin{cases}
 4(1 - e^{-5t}) & t \geq 0 \\
 0 & t < 0
 \end{cases}
\end{equation*}

How much charge has flowed in circuit?

\[q = \int_{0}^{t} i(t) \, dt \]

\[= \int_{0}^{t} 4(1 - e^{-5t}) \, dt \]

\[= 4t - \left[-\frac{4}{5} e^{-5t} \right]_{0}^{t} \]

\[= 4t + \frac{4}{5} e^{-5t} - 4(0) - \frac{4}{5} e^{0} \]

\[q(t) = 4t + \frac{4}{5} e^{-5t} - \frac{4}{5} \]

(C) Jerome P. Lynch, 2012
Example: Your calculator uses 4 AA batteries. Each battery provides 1.5V and has 200 W-s of energy.

If calculator draws 10 mA, how long will batteries last?

\[V = 4(1.5V) = 6V \]

\[P = V \cdot I = 6V \cdot (10 \times 10^{-3} A) = 0.06 W \]

\[E_{\text{tot}} = 200 \text{ W-s} \]

\[\Delta t = \frac{\Delta E}{P} = \frac{200 \text{ W-s}}{0.06} = 3.33 \times 10^3 \text{ s} \]