CLASS # 29 - INTRODUCTION TO BENDING BEAMS

OBJECTIVES:
1. VISUALIZE LOADED BEAMS
2. DEFINE FLEXURAL RIGIDITY

READ:
CHAPTER 10 PHILPOT

1. DRAWING ELASTIC CURVES

As engineers, use "intuition" to draw deflected shape of loaded beams (elastic curve)

- FIXED SUPPORT restrains rotation & displacement
- PIN RESTRICT DISPLACEMENT but allow rotation

- MOMENT DIAGRAMS tell us a lot about elastic curve
(1) Note that point E is not at load point.

(2) Moment - Curvature Relationship

Relate moment, M, to radius of curvature, ρ:

3 Coordinates: X, Y, θ
(Same coordinates used for deriving flexure formula)

(© JEROME P. LYNCH, 2015)
\[\varepsilon = \frac{ds'}{dx} - \frac{dx}{dx} \]

\[= \frac{ds' - \rho d\theta}{\rho d\theta} \]

\[= \frac{(p-y) d\theta - \rho d\theta}{\rho d\theta} \]

\[\varepsilon = \frac{-y}{\rho} \]

\[\frac{1}{P} = -\frac{\varepsilon}{y} \]

\[\sigma = E \varepsilon \]

\[\sigma = \frac{My}{I} \]

\[\frac{1}{P} = \frac{M}{EI} \]

EI - referred to as "flexural rigidity"

P - usually a large number