CLASS 23 - SHEAR FLOW (CONT.) & SHEAR CENTER

OBJECTIVES:
1. REVIEW LAST TIME'S PROBLEM
2. UNDERSTAND SHEAR FLOW IN THIN WALLS
3. DEFINE CENTER OF SHEAR

1. REVIEW SHEAR FLOW

\[q = \frac{V}{I} \text{ SHEAR FLOW} \]

Remember: Force per unit length

Gives us shear in longitudinal plane

But, we can use same equation to get shear flow throughout cross-sectional area

\[q = \frac{dF}{dx} \]

If thin walled, then \[dF = \tau dA \]

\[= \tau \ell \, dx \]

(c) JEROME P. LYNCH, 2015
\[q = \frac{\pi d x}{dx} \]

\[q = \pi t \]

Diagram:

- Shear flow cancel

\[\int q_x dy = V \]

Other cross-sections:

- Triangle
- Circle
3. SHEAR CENTER

PREVIOUSLY APPLIED SHEAR ALONG AXIS OF SYMMETRY

NON-SYMMETRIC SECTION - APPLY SHEAR AT CENTROID

MEMBER WILL TWIST CLOCKWISE

F_f CAUSE MOMENT

$M = F_f \cdot d$

RESULTING IN TWIST
IF DONT WANT TO TWIST:

\[e = \frac{F t d}{P} \]

Shear Center - Pt. of Loading WHERE BEAM ONLY BENDS → NO TWISTING