OBJECTIVES:
1. Stress Concentration in Beams with Notches
2. Describes in Elastic Bending
3. Example

Read:
PHILPOT B.9

Previously Assumed Prismatic:

- What is stress in cross section?
 \[\sigma = \frac{My}{I} \]
 (Flexure Formula)

- But, say we have change in member

 "Notched"
 "Fillet"

- We want to know max stress in vicinity of abrupt change:

 Use stress concentration factor, \(K \)

 \[\sigma_{max} = K \frac{MC}{I} \]

 Look up on chart

- For example

 Say
 \[\frac{a}{h} = 0.2 \]
 \[\frac{w}{h} = 1.5 \]

 234 MPa (based on regular flexure formula)

 \[\sigma_{max} = K (234 \text{ MPa}) \]

 \[= 340 \text{ MPa} \]

(c) Jerome P. Linha, 2015
Inelastic Bending:

First, what is maximum elastic moment?

\[
M_y = \int y (\sigma \text{d}A) = \int_{-h/2}^{h/2} y \left(\frac{2\sigma_{\text{max}}}{h} \right) y \, b \, dy
\]

\[
= \frac{2b}{h} \sigma_{\text{max}} \int_{-h/2}^{h/2} y^2 \, dy
\]

\[
= \frac{2b}{h} \sigma_{\text{max}} \left[\frac{y^3}{3} \right]_{-h/2}^{h/2}
\]

\[
= \frac{2b}{h} \sigma_{\text{max}} \left(\frac{h^3}{24} + \frac{h^3}{24} \right)
\]

\[
M_y = \frac{bh^2}{6} \sigma_y
\]
Load past ε_y:

\[M = \frac{3}{2} M_y \left(1 - \frac{4}{3} \frac{y^2}{h^2} \right) \]

Is there a limit? Yes!

\[M_p = \frac{\sigma_y bh}{2} \cdot \frac{1}{2} = \frac{1}{4} bh^2 \sigma_y = M_y \]

\[M_p = \frac{3}{2} M_y \]

(C) Jerome P. Lynch, 2015
Since can not take any more load, called, "Pinning".

behaves like a "PIN" or "HINGE"