CLASS 3: SHEAR STRESSES & ALLOWABLE STRESS (CH#1)

READ: CH 1 & CH 4

OBJECTIVE:
1. ILLUSTRATE EXAMPLES OF SHEAR STRESS
2. DEFINE ALLOWABLE STRESS DESIGN
3. DESIGN SIMPLE CONNECTIONS

SHEAR STRESS τ_{xy} DISTRIBUTION OF FORCE TANGENTIAL TO THE SURFACE OF MATERIAL

FOR ILLUSTRATION, CONSIDER FOLLOWING

F
BAR
SUPPORT

$F/2$
EQUVALENT RESULTANT, REALLY SHEAR STRESS

$F/2$
AREA OF SECTION

$F/2$
τ_{avg}

FOR SURFACE TANGENTIAL RESULTANT, V,

$\tau_{\text{avg}} = \frac{V}{A}$

(c) JEROME P. LYNCH 2015
DIRECT SHEAR DOMINATES DESIGN OF BOLTED CONNECTIONS IN STEEL STRUCTURES

INDUCING SHEAR AT BAR INTERNAL INTERFACE

SINGLE SHEAR CONNECTION

DOUBLE SHEAR CONNECTION

(C) JEROME P. LYNCH, 2015
EQUILIBRIUM OF SHEAR:

Consider bolt:

\[\tau = \frac{V}{A} \]

Consider 3-D element from surface upon which shear acts:

Box in equilibrium? No

\[\Sigma F = 0 \]

Equilibrium? No

\[\therefore \tau_{x} = \tau_{y} \]

\[\therefore \] All four shear forces are equal magnitude

(c) Jerome P. Lynch, 2015
ALLOWABLE STRESS

As structural engineers, it is our responsibility to design "safe" structures!

Design Methodology: Add factor of safety (FS) to account for unknown load and/or unknown material properties.

\[
F.S. = \frac{E\text{xpected Failure Level}}{Design Level}
\]

\[
F.S. = \frac{F_{\text{Fail}}}{F_{\text{Allow}}} = \frac{S_{\text{Fail}}}{S_{\text{Allow}}} = \frac{T_{\text{Fail}}}{T_{\text{Allow}}}
\]
What is the maximum possible value of the clamping force \(C \) in the jaws of the pliers shown in the figure if \(a = 3.75 \) in., \(b = 1.60 \) in., and the ultimate shear stress in the 0.20-in. diameter pin is 50 ksi?

What is the maximum permissible value of the applied load \(P \) if a factor of safety of 3.0 with respect to failure of the pin is to be maintained?

\[
\begin{align*}
\text{Consider one piece of pliers:} \\
\Sigma M_p &= R \cdot (3.75) - C \cdot (1.6 + 3.75) = 0 \\
R &= 1.4267 C
\end{align*}
\]

\[
\begin{align*}
\text{Find reaction w.r.t. C} \\
C_{ult} &= \frac{R_{ult}}{1.4267} \\
&= \frac{1100}{1.4267} \\
&= 770 \text{ lb}
\end{align*}
\]

\[
\begin{align*}
\text{F.S.} = 3.0 = \frac{P_{ult}}{P_{design}} \\
\text{Find Pult:} \\
P_{ult} &= R_{ult} (1.6') - P_{ult} (5.35') = 0 \\
P_{ult} &= 469.8 \text{ lb} \\
P_d &= \frac{P_{ult}}{3} = 156.6 \text{ lb} \\
\Rightarrow P_{allow} &= 157 \text{ lb}
\end{align*}
\]