
Verifying Aircraft Collision Avoidance Neural Networks
Through Linear Approximations of Safe Regions

Kyle D. Julian∗ and Mykel J. Kochenderfer
Stanford University, Stanford, CA 94305

Shivam Sharma∗ and Jean-Baptiste Jeannin
University of Michigan, Ann Arbor, MI 48109

Abstract

The next generation of aircraft collision avoidance systems
frame the problem as a Markov decision process and use dy-
namic programming to optimize the alerting logic. The re-
sulting system uses a large lookup table to determine advi-
sories given to pilots, but these tables can grow very large.
To enable the system to operate on limited hardware, prior
work investigated compressing the table using a deep neu-
ral network. However, ensuring that the neural network reli-
ably issues safe advisories is important for certification. This
work defines linearized regions where each advisory can be
safely provided, allowing Reluplex, a neural network verifi-
cation tool, to check if unsafe advisories are ever issued. A
notional collision avoidance policy is generated and used to
train a neural network representation. The neural networks
are checked for unsafe advisories, resulting in the discovery
of thousands of unsafe counterexamples.

Introduction
Over the last decade, neural network representations have
become popular in decision making systems for a variety
of domains. Neural networks are state-of-the-art for im-
age recognition systems (Simonyan and Zisserman 2015;
He et al. 2016) and can learn to play games at super-human
levels (Mnih et al. 2015; Silver et al. 2016). In these do-
mains, a mistake by the neural network may have minor
consequences; however, neural networks can also be used in
safety-critical systems where a failure could be catastrophic.
For example, neural networks have been used to steer au-
tonomous cars given images (Bojarski et al. 2016) and guide
unmanned aircraft to waypoints (Julian and Kochenderfer
2017). If a neural network steers an autonomous car off the
road or directs an aircraft into an obstacle, the result could
be be expensive or lead to loss of life. In order for neural
networks to be used for such applications, confidence must
be established in their safe operation.

In the last few years, new research has resulted in tools
to verify safety properties of neural networks. One tool,
Reluplex, uses a Satisfiability Modulo Theories solver and
extends the simplex method for neural networks with rec-
tified linear unit (ReLU) activation functions to determine

∗Equal Contribution
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

whether any input in a specified input region produces out-
puts with a desired property (Katz et al. 2017). Another ap-
proach defines neural network verification as a reachability
problem that can be solved using a mixed integer linear pro-
gram formulation (Lomuscio and Maganti 2017). Further-
more, a tool known as AI2 uses an overapproximation of the
neural network to quickly verify safety properties of neu-
ral networks (Gehr et al. 2018). These tools enable network
properties to be rapidly verified, but more work is needed to
develop properties that will ensure safe operation of neural
network systems.

This work focuses on the verification of neural net-
works used for aircraft collision avoidance. We created a
highly simplified aircraft collision avoidance policy that
uses vertical maneuvers using value iteration (Egorov et al.
2017). This policy, which we call VerticalCAS, is loosely
based on an early prototype of the next generation air-
borne collision avoidance system for commercial aircraft,
ACAS Xa (Kochenderfer 2015). Although VerticalCAS is
not the ACAS Xa system that will be flown on real aircraft,
VerticalCAS serves as a simple and open-source collision
avoidance policy that can be used in the development of
desirable properties. These properties should also hold for
other vertical collision avoidance systems. After generating
a collision avoidance policy, a neural network is trained to
represent the original discrete policy (Julian et al. 2016).

Previous work has developed equations to verify the
safety of the tabular collision avoidance policy by defining
“safeable” regions for each advisory (Jeannin et al. 2017). In
order to verify these properties for the neural network rep-
resentation, the equations are linearized to enable the use
of linear program solvers used by Reluplex. This paper de-
scribes the linearization process, introduces a new variable
τ , the time to loss of horizontal separation, and describes the
formulation and verification of “safeable” regions for neural
networks.

VerticalCAS
The VerticalCAS collision avoidance system used through-
out this paper is inspired by ACAS Xa, which frames
aircraft collision avoidance as a Markov decision process
(MDP) (Kochenderfer 2015). The ACAS Xa system is the
successor to the current Traffic alert and Collision Avoid-
ance System (TCAS) and provides pilots with advisories to



change their vertical rate to prevent a possible near mid-air
collision (NMAC). A NMAC is defined as an intruder air-
craft coming inside the ownship puck which is described
in Fig. 1 as a region hp = 100 ft above and below, and
rp = 500 ft radially around the ownship aircraft (the aircraft
where the collision avoidance system is installed).

VerticalCAS has 5 inputs which describe the system’s
state:

1. h (ft): Altitude of intruder relative to ownship

2. vO (ft/s): ownship vertical climb rate

3. vI (ft/s): intruder vertical climb rate

4. aprev: previous advisory

5. τ (sec): time to loss of horizontal separation

The first 3 inputs are spatial and velocity quantities that are
described in Fig. 1. Relative altitude h varies from −8000 ft
to 8000 ft, and the aircraft climb rates vary from −100 ft/s to
100 ft/s.

Previous advisory (aprev) dictates which advisories Verti-
calCAS can issue given the most recent advisory. This re-
stricts the network from issuing conflicting advisories like
strong ascend or descend advisories immediately after a
clear of conflict advisory which can be confusing to pilots.

Time to loss of horizontal separation (τ ) is the time till
the horizontal separation between the intruder and ownship
is less than rp. A more explicit definition of τ is

τ =
r − rp
rv

(1)

where r is the horizontal separation between the ownship
and intruder, and rv is the relative horizontal velocity be-
tween the two aircraft.

Markov Decision Process Policy
VerticalCAS is computed using local approximation value
iteration as implemented by the Julia package called
POMDPs.jl (Egorov et al. 2017). The states, dynamics,
rewards, and advisories reflect an early prototype of the
ACAS Xa system described by Kochenderfer (2015). Each
state s ∈ S represents a discrete encounter geometry be-
tween the ownship and intruder aircraft and has five dimen-
sions which are the inputs outlined above.

The system issues a new advisory a every ε seconds, and
there are nine possible advisories as described in Table 1,
where g is Earth’s sea-level gravitational acceleration (Jean-
nin et al. 2017). Each vertical advisory is defined by a target
velocity vlo and sign w. If w = 1, the ownship can assume a
velocity in the range [vlo,+∞), and if w = −1 the ownship
can assume a velocity in the range (−∞, vlo]. In addition to
the advisory (w, vlo), the ownship has to accelerate at least
alo until it is in the acceptable velocity range defined by the
issued advisory.

The transition model T (s, a, s′) and reward model r(s, a)
used for vertical collision avoidance are explained in previ-
ous work (Kochenderfer 2015). Local approximation value
iteration is used to compute the state-action values, Q(s, a),

y

x

Vertical intruder velocity (vI)

Vertical ownship velocity (vo)

Vertical separation (h)

2hp

rp

Figure 1: Three input variables of VerticalCAS neural net-
work and ownship puck defined by rp and hp on ownship
centered coordinate frame.

such that the finite-horizon Bellman equation holds for all
states and actions:

Q(s, a) = r(s, a) +
∑
s′

max
a′

T (s, a, s′)Q(s′, a′) (2)

Because s′ might not be exactly one of the discrete states s ∈
S, multilinear interpolation is used to computeQ(s′, a′). Af-
ter computing the Q values using local approximation value
iteration, the advisory associated with the highest Q value
for a given state is the best advisory and is issued by the
system. In addition, because the computed policy tends to
advise Clear of Conflict in cases where an NMAC is immi-
nent and unavoidable, the advisory at time τ = 6 is used in
situations where τ < 6.

Neural Network Representation
Storing the MDP policy with fine resolution in a table for-
mat can require large amounts of storage space, which may
prevent implementation on limited avionics hardware. One
approach to compressing the policy representation approxi-
mates the policy using a neural network through the use of
supervised learning and an asymmetric loss function, which
encourages the neural network to simultaneously approxi-
mate theQ-values and highest scoring advisory (Julian et al.
2016). One network was trained for each previous advisory
aprev, resulting in nine fully connected neural networks using
six hidden layers of 45 hidden units each. Each hidden layer
uses rectified linear unit (ReLU) activation, which is defined
as ReLU(x) = max(0, x) (Dahl, Sainath, and Hinton 2013).
Each network uses the remaining four state variables as in-
puts and outputs a value associated with each possible advi-
sory. Each neural network was trained for 200 epochs using
AdaMax optimization (Kingma and Ba 2015) implemented
in Keras (Chollet 2015) with the Theano backend (Theano
Development Team 2016), which requires an hour to train
on an NVidia Titan X GPU.

Figure 2 plots the advisory the system would give to the
ownship if the intruder were at each location in the plot. In
this scenario, the ownship is climbing while the intruder is
maintaining a constant altitude. If the intruder is approach-
ing the ownship from above, the system alerts the ownship to



Table 1: VerticalCAS advisories
Advisory Description Vertical Range Strength Sign Advisory

(Min, Max) [ft/min] alo w vlo [ft/min]

COC Clear of Conflict (−∞,+∞) g/4 N/A N/A
DNC Do Not Climb (−∞, 0] g/4 −1 0
DND Do Not Descend [0,+∞) g/4 +1 0
DES1500 Descend at least 1500 ft/min (−∞,−1500] g/4 −1 −1500
CL1500 Climb at least 1500 ft/min [+1500,+∞) g/4 +1 +1500
SDES1500 Strengthen Descend to at least 1500 ft/min (−∞,−1500] g/3 −1 −1500
SCL1500 Strengthen Climb to at least 1500 ft/min [+1500,+∞) g/3 +1 +1500
SDES2500 Strengthen Descend to at least 2500 ft/min (−∞,−2500] g/3 −1 −2500
SCL2500 Strengthen Climb to at least 2500 ft/min [+2500,+∞) g/3 +1 +2500

CL1500
DES1500

DNC

COC

0 10 20 30 40
−1,000

−500

0

500

1,000

h
(f

t)

0 10 20 30 40
−1,000

−500

0

500

1,000

τ (sec)

h
(f

t)

Figure 2: Example policy plots for a climbing ownship and
level-flying intruder using the MDP table (top) and neural
network (bottom)

stop climbing (DNC) or descend (DES1500) in order to pre-
vent an NMAC. If the intruder is a little below the ownship,
the system advises the pilot to continue climbing (CL1500).
In other locations, a collision is not imminent and the sys-
tem alerts clear-of-conflict (COC). The neural network rep-
resentation is a smooth approximation of the original table
policy. Although the network appears to represent the table
well, verification is needed to ensure that the neural network
alerts safely at all times.

Safe Regions
The safe region is defined as the region in space where an
intruder aircraft will be safe (i.e. will not enter the ownship
puck), given the ownship aircraft is following a single advi-
sory (shown in Fig. 3). The safe region is described by the
ownship travelling along a nominal trajectory. This nominal
trajectory is described by the ownship following an advisory
exactly, i.e., if the advisory issued allows a range of veloc-
ities [1500,+∞), the nominal trajectory will be defined by
the ownship assuming a velocity of 1500 ft/min. From our
earlier definition of τ =

r−rp
rv

, τ = 0 of the nominal trajec-
tory is at r = rp.

The nominal trajectory of the ownship is simply a
parabolic trajectory due to constant vertical acceleration.
The trajectory can be written as follows (Jeannin et al.
2017):

hn =

{
alo

2 τ
2 + vOτ, if 0 ≤ τ < vlo−vO

alo

vloτ − (vlo−vO)2

2alo
, if vlo−vO

alo
≤ τ

(3)

where hn is the altitude of the ownship in a coordinate frame
centered in the starting position of the ownship Fig. 1 (Note:
the subscript n denotes the nominal trajectory). The piece-
wise Eq. (3) describes the dynamics when the ownship ve-
locity is less than vlo and when the ownship velocity is
greater than vlo. Once the ownship climb rate reaches vlo,
the aircraft is compliant with the advisory and continues
climbing with no vertical acceleration.

For the example of CL1500, the safe region will be the
region below the ‘puck’ of the ownship flying along the
CL1500 nominal trajectory. If an intruder is in this region
below the ownship, it will be safe from collision for an own-
ship following the CL1500 advisory. Therefore, this region
is defined as the safe region for a particular advisory.



0 2 4 6 8 10

−100

0

100

Unsafe for CL1500

Safe for CL1500

Ownship

Intruder

τ (sec)

h
(f

t)

Figure 3: Intruder in the safe region for ownship advisory
CL1500 and vO < 0

Safe regions have to be able to be represented in terms of
network variables to define a search space in the state-space
of the network. Representing safety bounds solely in terms
of the five network variables poses some challenges which
are discussed in the next section.

One limitation with using safe regions to verify safety
properties is that safe regions assume that the ownship fol-
lows a single advisory throughout the encounter. In reality,
multiple advisories can be issued during an encounter, giv-
ing the system an opportunity to change the advisory. There-
fore, an advisory that was initially unsafe can be made safe
with a change later in the encounter. Safeable regions, de-
scribed below, build on the safe region concept and tackle
this shortcoming.

Worst-Case Scenario Approach
An NMAC is defined as an intruder aircraft coming inside
the ownship puck, as depicted in Fig. 1. The network is try-
ing to prevent NMAC’s, so the safe region is described by
this puck around the ownship aircraft.

In Fig. 3, when the ownship is descending, the safe re-
gion bounds are described by the ‘back’ of the ownship puck
(Jeannin et al. 2017), where the ‘back’ of the ownship puck
can be represented as τback = τ − 2rp

rv
, where rp is a known

constant, but, rv is unknown because it is not an input to the
network. Thus, a worst-case approximation must be made to
define the safe region bounds described by the back of the
ownship puck.

At τ = 0 the horizontal separation between the intruder
and ownship is rp. After this point, horizontal separation be-
tween the ownship puck and the intruder will not be regained
again until t =

2rp
rv

seconds in the future when the intruder
will cross the back of the ownship puck. In the worst-case,
rv → 0, and horizontal separation may never be regained.

0 2 4 6 8 10

−100

0

100

Unsafe for CL1500

Safe for CL1500

Intruder

Ownship

τ (sec)

h
(f

t)

Figure 4: Intruder in the worst-case safe region for the own-
ship advisory CL1500 and vO < 0

As a result, the intruder must be at an altitude that is safe-
able for all time t > τ .

The relative horizontal velocity of the two aircraft rv ef-
fectively dictates the width of the ownship puck in τ -space.
The worst-case safe region bound should include all other
unsafe regions, which is achieved as rv → 0 or the own-
ship puck is infinitely wide. The worst-case safe region
bounds can be seen in Fig. 4. Using this approach, a worst-
case safe region bound can be described where ΩUnsafe ⊆
ΩUnsafe(worst case) i.e. all possible unsafe regions are subsets
of the worst-case scenario unsafe region.

Safeable Regions
Safeable regions are defined as regions which are currently
safe or that can be made safe in the future. A safeable re-
gion is constructed by assuming two worst-case trajectories
of an aircraft complying with an advisory for time ε (Ver-
ticalCAS issues a new advisory every ε seconds). After ε,
these two trajectories represent the two extreme positions of
the ownship that complies with the initial advisory. From
this point, the strongest reversing and strengthening advi-
sories that VerticalCAS can issue are considered. If either
of these advisories prevent a collision, then the intruder is
in a safeable region. As a result, a collision with an intruder
in the safeable region can always be avoided. For example,
as seen in Figure 5, if the intruder is located as shown, the
system can safely issue a CL1500 advisory because a strong
reversal at the next time step will ensure that the ownship
descends before reaching the intruder. A more detailed ex-
planation of safeable regions is provided in (Jeannin et al.
2017).

If the system always gives safeable advisories whenever
possible, then an intruder beginning in the safeable region
will always be avoided. As a result, ensuring safety when



0 2 4 6 8 10

−200

−100

0

100

Unsafeable for
CL1500

Safeable for
CL1500

Ownship

Intruder

τ = ε

τ (sec)

h
(f

t)

Figure 5: Safeable region with strengthen and reversal alerts
issued at τ = ε.

using the neural network system requires checking for any
instances when the neural network gives an unsafeable ad-
visory when a safeable advisory exists. To generate these
regions, the region that is unsafeable for all advisories must
be computed, which can be done by generating the intersec-
tion of all possible advisories, as illustrated in Fig. 6. The
region to verify is shown in red in Fig. 7 because this re-
gion is unsafeable for CL1500 but would be safeable for an-
other advisory such as SCL2500 or SDES2500. The next
section describes how these safeable regions are adapted for
use with the Reluplex neural network verification tool.

Checking Safeable with Reluplex
Reluplex extends the simplex method to verify neural net-
work properties by representing neural networks, activation
functions, and constraints as piecewise linear equations. Lin-
ear bounds are placed on the input variables to define the
search region, and the output variables are constrained such
that the advisory of interest must be associated with the
largest valued output from the network. Reluplex system-
atically searches for an input to satisfy both input and output
constraints. (Katz et al. 2017). The red unsafeable region in
Fig. 7 is nonlinear and non-convex, so the region cannot be
verified using Reluplex in the current form.

There are three adjustments made to the safeable regions
to prepare the regions for Reluplex. First, the safeable re-
gions are functions of the ownship’s initial climbrate, which
can vary from −100 ft/s to 100 ft/s. In order to avoid verify-
ing every possible region generated by all floating point val-
ues of ownship climb rate, the regions are generated assum-
ing a small range of climb rates instead of a single climb rate.
To generate the safeable boundaries, the upper and lower tra-
jectories are generated assuming the worst case initial climb
rate. As a result, the unsafeable boundaries grow outwards,
as seen in Fig. 8, which shows the safeable region bound-

0 2 4 6 8

−300

−200

−100

0

100

τ (sec)

h
(f

t)

COC
DNC
DND
DES1500
CL1500
SDES1500
SCL1500
SDES2500
SCL2500
Unsafe

Figure 6: All unsafeable regions and the region that is un-
safeable for all advisories

0 2 4 6 8 10

−200

−100

0

100

Unsafeable for
All Advisories

Safeable for CL1500

Unsafeable for CL1500

τ (sec)

h
(f

t)

Figure 7: Safeable and unsafeable regions for CL1500 advi-
sory

aries for different ranges of climb rates.
Next, the safeable regions are linearized so that bound-

aries can be represented in Reluplex. The linearization
over-approximates the unsafeable region by approximating
quadratic bounds as a piecewise linear function. The ap-
proximation uses either an inner approximation connecting
points on the curve, or an outer approximation using line
segments tangent to the curve. The type of approximation
used is chosen to over-approximate the unsafeable region.
Figure 9 shows the linearization of the safeable region that
over-approximates the unsafeable region.

Lastly, the region checked by Reluplex is split into small



0 2 4 6 8 10

−200

−100

0

100

τ (sec)

h
(f

t)

vO: [-30,-30] ft/s
vO: [-31,-29] ft/s
vO: [-32,-28] ft/s
vO: [-34,-26] ft/s
vO: [-38,-22] ft/s

Figure 8: Safeable regions for different initial climbrates for
the ownship

0 2 4 6 8

−150

−100

−50

0

50

100

τ (sec)

h
(f

t)

Original
Linear

Figure 9: Over-approximation of the search region

slices that are defined by a lower and upper bound on τ as
well as a single linear lower bound on h and a single linear
upper bound on h. Because the neural network uses τ = 6
for inputs where τ = 6, the τ bounds are adjusted to ensure
the network is evaluated at τ = 6 for inputs where τ < 6.
Each small slice is checked as a separate query with Relu-
plex. A satisfiable set of inputs found by Reluplex represents
a counterexample, or a set of network inputs that produce
an unsafeable advisory when a safeable advisory exists. Be-
cause Reluplex is sound and complete, if Reluplex cannot
find a counterexample for a query, then no counterexample
exists.

6 6.5 7

−600

−400

−200

0

200

400

600

τ (sec)

h
(f

t)

0.2

0.4

0.6

0.8

1

·10−3

Figure 10: Heat map of counterexamples for aprev: Clear of
Conflict

Results
To verify the unsafeable regions in all of the neural net-
works, each of the nine neural networks associated with one
of the previous advisories is evaluated for all allowed advi-
sories. Using a ∆vO of 2 ft/s, there are 100 velocity ranges to
verify. After slicing up each unsafeable region into small re-
gions with linear bounds, a total of 42, 032 separate queries
were generated and evaluated with Reluplex, which required
11 hours when using 9 independent threads. Each query was
run with ε = 1 second (in all the figures ε = 3 seconds just
for illustration purposes). As a result, 3, 957 counterexam-
ples were discovered, about 9.14% of all queries. A table of
when these counterexamples occurred is shown in Table 2,
where N/A is used for advisories that are not allowed given
the previous advisory. Most counterexamples occur for the
COC advisory, but many other counterexamples exist for
other advisories as well.

Visualizing the counterexamples in the form of a heat map
allows for analysis of the network’s performance. Fig. 10
plots all the counterexamples found by Reluplex for advi-
sories issued after a clear of conflict advisory. No counterex-
amples are found in the white region in the middle of the
plot because this region is unsafeable for all advisories and
is omitted from the search region, as illustrated in Fig. 7. The
lighter points represent a higher probability density of coun-
terexamples. The figure illustrates that counterexamples are
most prevalent at around τ = 7 s. This information can be
useful for tweaking networks to perform safely. Also, Fig. 10
shows rough vertical stripes, which is due to the preference
of Reluplex to return SAT points that occur along the bound-
ary of a region rather than somewhere in the middle of a
region.

In addition to the 42, 032 separate queries run that are
summarized in Table 2, we ran 143, 048 queries on 25 in-



Table 2: Number of counterexamples discovered with Reluplex
Current Advisory

Previous Advisory COC DNC DND DES1500 CL1500 SDES1500 SCL1500 SDES2500 SCL2500

COC 359 28 0 48 21 N/A N/A N/A N/A
DNC 438 30 0 40 47 N/A N/A N/A N/A
DND 249 0 17 133 50 N/A N/A N/A N/A
DES1500 284 0 1 1 0 65 76 N/A N/A
CL1500 223 0 0 0 0 117 21 N/A N/A
SDES1500 281 0 0 0 0 26 6 32 65
SCL1500 238 0 3 0 0 53 66 43 51
SDES2500 324 0 0 0 0 12 1 89 25
SCL2500 209 0 12 0 0 52 15 48 58

0 2 4 6

0

200

400

DES1500

COC

CL1500

τ (sec)

h
(f

t)

COC Unsafeable Region

Figure 11: Unsafeable region for COC containing a coun-
terexample

dependent threads to study the effect of the linearization ap-
proximation on the number of counterexamples generated.
All advisories were checked for aprev = COC, linearized
with line segment lengths of τ= 0.125, 0.25, 0.5, 1.0, and
2.0 seconds for both under and over-approximation. All lin-
ear segments were split into small regions of the same size
so that the number of regions generated remained the same
for all cases. The discretization of the linearization follows
the convergence trend shown in Fig. 13 expected, for an
over-approximated safeable region, a finer linearization re-
duces the search region and therefore the number of counter-
examples found reduces. Conversely, a finer linearization of
an under-approximated safeable region increases the search-
region and therefore the number of counter-examples found
as well.

Some of these counterexamples are informative, and visu-
alizing the policy at these points reveals problems that need
to be addressed. For example, Fig. 11 shows the unsafeable
region for COC, which extends into a large area of COC.
Given that the unsafeable region appears at low τ and h, a
collision is imminent, and COC is not safe to give. This in-
formation can be used to refine the policy and network to
discourage COC advisories in these situations.

0 1 2 3 4 5 6

−100

0

100

DES1500

CL1500

τ (sec)

h
(f

t)

CL1500 Unsafeable Region
DES1500 Unsafeable Region

Figure 12: Unsafeable regions for CL1500 and DES1500
with DES1500 counterexample

Many counterexamples are found at the boundary be-
tween two alerting regions. As shown in Figure 12, the re-
gions being checked for DES1500 and CL1500 meet at a
point. In order to avoid any counterexamples, the boundary
between DES1500 and CL1500 must pass exactly through
the point that divides the two unsafe regions. However, be-
cause the neural network is an approximation, the boundary
is a little off, and a counterexample is discovered. In addi-
tion, no other advisory is safeable around the meeting point,
so there is no other advisory the network could give to avoid
a counterexample. Requiring the network to change advi-
sories at an exact point in order to prove safety is too strict,
so more work is needed to relax this requirement while still
guaranteeing safety.

Conclusions and Future Work
After generating collision avoidance networks, linear safe-
able regions were defined for all possible advisories. The
safeable regions define when an advisory can be made safe
in the future, so that advisory is safe to give in the safe-
able region. If the system always gives safeable advisories
when possible, then safety is guaranteed assuming the in-
truder begins in the safeable region. The safeable regions
were checked with Reluplex, resulting in the discovery of



0.125 0.5 1 2

1.66

1.66

1.67

·104

τ discretization (sec)

N
um

be
ro

fc
ou

nt
er

-e
xa

m
pl

es

Figure 13: Convergence of under-approximation and outer-
approximation linearization techniques.

thousands of counterexamples. The counterexamples can be
used to refine the neural networks to improve safety.

A primary issue with proving safety using safeable re-
gions is the hard safety requirement imposed on neural net-
works. The safeable property requires that the boundary be-
tween advisories given by the neural network must pass
through an exact point in the state space. In reality, no neural
network will be able to satisfy such a hard requirement in all
situations.

To overcome this challenge, we have been exploring an
extension to safeable, which we call safeable2. A safeable2
region is defined as a region that is safeable by at least two
advisories. Verifying safety with safeable2 removes the hard
requirement of the neural network having to switch advi-
sories at a single point, but rather allows a small region to
switch advisories. In addition, safeable2 omits a small re-
gion of uncertain behavior (the region that is safeable by
only a single advisory) around the unsafeable region where
a lot of counterexamples are found. It will be interesting to
explore the implications of using safeable2 to verify safety
and whether this method eliminates spurious counterexam-
ples to safe operation. Furthermore, future work will model
pilot delay to ensure safety can be guaranteed with realistic
pilot compliance.

References
Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316.
Chollet, F. 2015. Keras: Deep learning library for Theano
and TensorFlow.
Dahl, G. E.; Sainath, T. N.; and Hinton, G. E. 2013. Improv-

ing deep neural networks for LVCSR using rectified linear
units and dropout. In International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), 8609–8613.
IEEE.
Egorov, M.; Sunberg, Z. N.; Balaban, E.; Wheeler, T. A.;
Gupta, J. K.; and Kochenderfer, M. J. 2017. POMDPs.jl:
A framework for sequential decision making under uncer-
tainty. Journal of Machine Learning Research 18(26):1–5.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. 2018. AI2: Safety and ro-
bustness certification of neural networks with abstract inter-
pretation. In IEEE Symposium on Security and Privacy (SP).
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR), 770–778.
Jeannin, J.-B.; Ghorbal, K.; Kouskoulas, Y.; Schmidt, A.;
Gardner, R.; Mitsch, S.; and Platzer, A. 2017. A for-
mally verified hybrid system for safe advisories in the next-
generation airborne collision avoidance system. Interna-
tional Journal on Software Tools for Technology Transfer
19(6):717–741.
Julian, K. D., and Kochenderfer, M. J. 2017. Neural network
guidance for UAVs. In AIAA Guidance, Navigation, and
Control Conference, 1743.
Julian, K. D.; Lopez, J.; Brush, J. S.; Owen, M. P.; and
Kochenderfer, M. J. 2016. Policy compression for aircraft
collision avoidance systems. In Digital Avionics Systems
Conference (DASC), 1–10. IEEE.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver for
verifying deep neural networks. In International Conference
on Computer Aided Verification, 97–117. Springer.
Kingma, D., and Ba, J. 2015. Adam: A method for stochas-
tic optimization. In International Conference on Learning
Representations.
Kochenderfer, M. J. 2015. Decision Making Under Uncer-
tainty: Theory and Application. MIT Press.
Lomuscio, A., and Maganti, L. 2017. An approach to reach-
ability analysis for feed-forward relu neural networks. arXiv
preprint arXiv:1706.07351.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
Nature 529(7587):484.
Simonyan, K., and Zisserman, A. 2015. Very deep con-
volutional networks for large-scale image recognition. In
International Conference on Learning Representations.
Theano Development Team. 2016. Theano: A Python



framework for fast computation of mathematical expres-
sions. arXiv preprint arXiv:1605.02688.


