
Capsules and Separation
Jean-Baptiste Jeannin and Dexter Kozen

Computer Science Department
Cornell University

Ithaca, NY 14853-7501, USA

Abstract—We study a formulation of separation logic using
capsules, a representation of the state of a computation in higher-
order programming languages with mutable variables. We prove
soundness of the frame rule in this context and investigate
alternative formulations with weaker side conditions.

Index Terms—capsules, separation logic

I. INTRODUCTION

Capsules [8] give a simple and mathematically appealing
approach to semantics of higher-order programs that is consis-
tent with both the functional and imperative paradigms. They
minimally extend the classical λ-calculus to allow mutable
variables, thus enabling the construction of certain coterms (in-
finite terms) representing recursive functions without the need
for fixpoint combinators. They have a well-defined statically-
scoped evaluation semantics, are typable with simple types,
and are Turing complete.

Perhaps the most important aspect of capsules is that
their evaluation semantics captures static scoping without
introducing cumbersome combinatorial machinery needed to
implement closures. Closures have been well known since the
earliest days of functional programming. They were introduced
to rectify a bug1 in the original evaluation semantics of
LISP [12]. It is perhaps well understood that static scoping
corresponds to β-reduction with safe substitution in the λ-
calculus, and that closures correctly implement this, but there
has apparently never been a formal proof until quite recently
[8]. Capsules were the key ingredient that made this proof
mathematically tractable.

Capsules replace heaps, stores, stacks, and pointers with
the single mathematical concept of variable binding, yet are
equally expressive and represent the same data dependencies
and liveness structure. In a sense, capsules are to closures
what graphs are to their adjacency list representations. One
would not reason mathematically about graphs in terms of their
adjacency list representations; neither should one reason about
the evaluation semantics of higher order programs in terms of
their implementations. With no side effects, λ-calculus with
β-reduction is the model of choice, but it does not allow for
mutable variables.

Separation logic is a logic for the study of locality and
shared data. Introduced by Reynolds in a series of lectures in
the late 1990s, based on an earlier idea of Burstall, separation
logic has been widely studied in the last decade [1], [6],
[14], [16], [20], [21]. The difficulties of reasoning in the

1subsequently upgraded to a feature, now known as dynamic scoping

presence of heaps, stores, stacks, and pointers are no more
apparent than in this literature. Several papers [4], [5], [15],
[24] cite notoriously thorny issues from dangling pointers
to arcane side conditions needed for soundness. Reynolds
himself acknowledged that there were some difficulties with
his original formulation [21]. Chief among the problems is
the issue of catastrophic failure due to the dereferencing of
unbound variables or dangling pointers. There seems to be an
unspoken belief that this is an unavoidable aspect that must
be confronted in any realistic model of computation.

On the contrary, we believe that the essential structure of
separation is independent of these encumbrances. It is our the-
sis that freedom from catastrophic failure is the responsibility
of the programming language, not the logic. Capsule semantics
provides this assurance, even in the presence of higher-order
constructs and mutable variables.

In this paper, we propose a semantics for separation logic
based on capsules. In §IV we give the semantics and prove the
soundness of the frame rule in this context. In §IV-D, we study
the motivation behind the nonstandard definition of partial
correctness preferred in much of the literature of separation
logic [5], [21] and investigate alternatives. It is here that the
advantages of capsule semantics in the study of separation can
best be seen.

A. Related Work

There are two main differences between our work and the
previous work on separation logic. In previous work, the au-
thors usually adopt either an imperative, C-style programming
language with low-level heap operations, or a functional, ML-
style programming language with immutable variables and
explicit references. According to Mason and Talcott [11], in
functional languages there are two approaches to introducing
objects with memory: the LISP approach, where all variables
are mutable, and the ML approach, where all variables are
immutable and references are introduced. One of the reasons
why the ML view is usually chosen for separation logic on
functional programs is that having immutable variables is the
only way to get a correct semantics based on closures [18]. By
using capsules instead, we are able to use mutable variables
in the style of LISP.

The second main difference in this work is that we insist
that all capsule environments σ are closed, i.e., that every free
variable appearing in a σ(x) should be defined in σ. To us, this
seems like a very natural thing. But as far as we know, none
of the previous work requires anything like this. When using

C-style languages with an environment and a heap, writing
down a similar condition would require both the environment
and the heap, whereas the separation logic definitions usually
only use heaps. Even Neelakantan Krishnaswami et al. [10],
though using an ML-style language, explicitly say that they
permit dangling pointers as long as the pointers themselves
are well typed. Note that, if trying to relate the semantics of
capsules with, say, a more traditional semantics using closures
and a heap, the capsule environment behaves like a heap rather
than like an environment in the traditional sense [7].

The original work on separation logic, summarized by
Reynolds [21], uses an imperative, C-style programming lan-
guage with low-level commands and already gives a proof of
a version of the frame rule.

Our work is most closely related to work by Krishnaswami,
Birkedal, Aldrich and Reynolds [9], [10], who give a sep-
aration logic for ML. However, our system allows mutable
variables in the style of LISP, whereas theirs uses explicit
references allocated in an explicit heap.

Birkedal, Torp-Smith and Yang [3] also study the frame
rule in the context of a higher-order language, idealized Algol
extended with heaps, but their stack variables are immutable
as well.

There has been some work on so-called higher-order stores
[2], [19], [22], where some code can be stored in a heap cell.
Because any λ-abstractions can be stored in the environment,
and executing some of them can have side-effects, our setup
naturally supports higher-order stores.

II. CAPSULE DEFINITIONS

In this section we briefly review the definition of capsules
and their semantics from [8].

A. Syntax

Expressions Exp = {d, e, a, b, . . .} contain both functional
and imperative features. There is an unlimited supply of
variables x, y, z, . . . of all (simple) types, as well as constants
f, c, . . . for primitive values. () is the only constant of type
unit, and true and false are the only two constants of type
bool. In the examples, 0, 1, 2, . . . are predefined constants of
type int. In addition, there are functional features
• λ-abstraction λx.e
• application (d e),

imperative features
• assignment x := e
• composition d; e
• conditional if b then d else e
• while loop while b do e,

and defined expressions
• let x = d in e (λx.e) d
• let rec x = d in e let x = a in x := d; e

where a is any expression of the appropriate type. The tech-
nique for formation of recursive functions in the last definition
is known as Landin’s knot.

Let Var be the set of variables, Const the set of constants,
and λ-Abs the set of λ-abstractions. Given an expression
e, let FV(e) denote the set of free variables of e. Given a
partial function h : Var ⇀ Var such that FV(e) ⊆ domh,
let h(e) be the expression e where every instance of a free
variable x ∈ FV(e) has been replaced by the variable h(x).
Thus h : Exp ⇀ Exp is the unique homomorphic extension
of h : Var ⇀ Var. Given two partial functions g and
h, g ◦ h denotes their composition: g ◦ h(x) = g(h(x)).
Given a function h, we write h[x/v] the function such that
h[x/v](y) = h(y) for y 6= x and h[x/v](x) = v. Given an
expression e, we write e[x/y] for the expression e with y
substituted for all free occurrences of x.

Types α, β, . . . are ordinary simple types built inductively
from an unspecified family of base types, including at least
unit and bool, and the usual function type constructor →. All
constants c of the language have a type type(c); by convention,
we use c for a constant of a base type and f for a constant of
a functional type. Γ is a type environment, a partial function
Var ⇀ Type. As is standard, we write Γ, x : α for the typing
environment Γ where x has been bound or rebound to α. The
typing rules are standard:

Γ ` c : α if type(c) = α Γ, x : α ` x : α

Γ, x : α ` e : β

Γ ` λx.e : α→ β

Γ ` d : α→ β Γ ` e : α

Γ ` (d e) : β

Γ ` x : α Γ ` e : α

Γ ` x := e : unit

Γ ` d : unit Γ ` e : α

Γ ` d; e : α

Γ ` b : bool Γ ` d : α Γ ` e : α

Γ ` if b then d else e : α
Γ ` b : bool Γ ` e : unit

Γ ` while b do e : unit

Henceforth all the expressions we consider will be assumed
to be well-typed with respect to these rules.

An expression is irreducible if it is either a constant or
a λ-abstraction. Note that variables are not irreducible. Let
Irred = Const + λ-Abs denote the set of irreducible terms.
(These are often called values in the λ-calculus literature, but
we avoid this terminology here because it is misleading, as
they are not values in the intuitive sense.)

A capsule environment is a partial function σ : Var ⇀ Irred
satisfying the following closure condition:

∀x ∈ domσ FV(σ(x)) ⊆ domσ.

This says that all free variables appearing in expressions σ(x)
must also be bound to an expression. Thus free variables
are not really free; every variable in σ either occurs in the
scope of a λ or is bound by σ to an expression. There
may be circularities; this enables a representation of recursive
functions.

The closure of a set A ⊆ domσ with respect to σ, denoted
clσ(A), is the smallest set B containing A such that if x ∈ B
then FV(σ(x)) ⊆ B. It is the domain of the least-defined

capsule environment whose domain contains A and that agrees
with σ on its domain.

A capsule is a pair 〈e, σ〉, where e is an expression and
σ is a capsule environment, such that FV(e) ⊆ domσ.
As above, every variable appearing in 〈e, σ〉 either occurs
in the scope of a λ or is bound by σ to an expression.
These conditions preclude catastrophic failure due to access
of unbound variables.

The term α-conversion refers to the renaming of bound
variables. With a capsule 〈e, σ〉, this can happen in two
ways. The traditional form maps a subterm λx.d to λy.d[x/y],
provided y would not be captured in d. We call this α-
conversion of the first kind. One can also rename a variable
x ∈ domσ and all free occurrences of x in e and σ(z) for
z ∈ domσ to y, provided y 6∈ domσ already and y would not
be captured. We call this α-conversion of the second kind.

B. Semantics

Capsule evaluation semantics looks very much like the
original evaluation semantics of LISP, with the added twist
that a fresh variable is substituted for the parameter in β-
reductions. The relevant small-step rule is

〈(λx.e v), σ〉 → 〈e[x/y], σ[y/v]〉 (y fresh)

In the original evaluation semantics of LISP, the right-hand
side is 〈e, σ[x/v]〉, which gives dynamic scoping. As proved
in [8], this simple change faithfully models β-reduction with
safe substitution in the λ-calculus, providing static scoping
without closures.

Another evaluation rule of particular note is the assignment
rule:

〈x := v, σ〉 → 〈(), σ[x/v]〉

where v is irreducible. The closure conditions on capsules
ensure that x must already be bound in σ. The variable x is
rebound to the irreducible expression v.

Other small-step rules are

〈x, σ〉 → 〈σ(x), σ〉
〈f c, σ〉 → 〈f(c), σ〉
〈(); e, σ〉 → 〈e, σ〉

〈if true then d else e, σ〉 → 〈d, σ〉
〈if false then d else e, σ〉 → 〈e, σ〉

〈while b do e, σ〉 →
〈if b then (e;while b do e) else (), σ〉

There are also context rules that define a standard shallow
applicative-order (leftmost innermost, call-by-value) evalua-
tion strategy. The reduction rules preserve types and cannot
fail catastrophically. Thus every computation either continues
forever or terminates with a well-typed final capsule 〈v, σ〉,
where v is irreducible.

The relation ∗→ is the reflexive transitive closure of →.
See [8] for several examples that illustrate how the system

manages recursive functions, static scoping, and garbage col-
lection.

C. Assertions

Assertions P,Q, . . . are statements in some logical system,
possibly with free variables in Var. We write FV(P) for the
set of free variables of P . These variables are subject to
interpretation provided by a capsule environment σ.

The exact nature of the underlying logic is unimportant—
it could be propositional, first order, second order or higher
order—but we do require a few basic properties common
to standard logical systems. There must be a well-defined
satisfaction relation |= such that σ |= P has a truth value
when the free variables of P are interpreted by the capsule
environment σ. Use of the metaexpression σ |= P carries the
tacit assumption that FV(P) ⊆ domσ. We will augment the
logic with the separation logic operators ∗ and −∗ (defined
later in §IV). Finally, we require the following (natural)
property to hold: if σ |= P , and z ∈ domσ − FV(P), then z
can be renamed via α-conversion of the second kind without
affecting the truth of P . In examples, we will use first order
logic with ∗ and −∗, and equality on base types.

III. PARTIAL CORRECTNESS

The traditional definition of partial correctness and the
definition used in the literature on separation logic diverge
in a subtle and interesting way. The difference hinges on
whether the precondition is required to assert the absence
of catastrophic failure due to dangling pointers or lookup of
unbound variables; this is the abort condition of Reynolds [21]
or the fault condition of Calcagno, O’Hearn, and Yang [5].
Our view, however, is that avoidance of catastrophic failure is
the responsibility of the programming language semantics, not
the program logic, and capsules do just that. Can this condition
then be eliminated? In this section we shed some light on this
question.

Let P,Q be assertions and e a program. At issue is the
meaning of the partial correctness assertion {P} e {Q}. Con-
sider the following three metastatements, each parameterized
by a closed environment σ:

(Aσ) σ |= P
(Bσ) FV(e) ⊆ domσ
(Cσ) if 〈e, σ〉 ∗→ 〈v, τ〉 and v is irreducible, then τ |= Q.
Statement (Aσ) entails FV(P) ⊆ domσ, because the defini-
tion of |= does not make sense without it. More strongly,
clσ(FV(P)) ⊆ domσ, since σ is closed. Statement (Bσ)
is equivalent to the assertion that 〈e, σ〉 is a valid capsule.
Reynolds’s definition [21] uses a slightly different formulation

(B′σ) ¬(〈e, σ〉 ∗→ abort)
in place of (Bσ). Here 〈e, σ〉 need not be a valid capsule. The
semantics of capsule evaluation already precludes abort, thus
(B′σ) is always true if 〈e, σ〉 is a capsule; that is, (Bσ) implies
(B′σ).

Now consider the following potential interpretations of
{P} e {Q}.

{P} e {Q} ⇔ ∀σ (Aσ) ∧ (Bσ)⇒ (Cσ) (1)
{P} e {Q} ⇔ ∀σ (Aσ)⇒ (Bσ) ∧ (Cσ) (2)

Definition (1) says that if the precondition P holds of the
input state σ and the evaluation of 〈e, σ〉 terminates normally,
then the output state τ satisfies the postcondition Q. This is
the naive interpretation used in traditional forms of Hoare
logic. Alternatively, the version preferred in the literature
on separation logic would be (2), the difference being that
the precondition P must ensure that the evaluation of 〈e, σ〉
cannot terminate abnormally.

Reynolds’s version [21] is actually slightly weaker, using
(B′σ) instead of (Bσ):

{P} e {Q} ⇔ ∀σ (Aσ)⇒ (B′σ) ∧ (Cσ) (3)

However, the difference is inconsequential: if {P}e{Q} holds
in the sense of (3) but not (2), then there exists a variable x ∈
FV(e)−domσ for some σ satisfying P , and consequently x ∈
FV(e)− clσ(FV(P)); but by (B′σ), x can never be referenced
or assigned in the evaluation of 〈e, σ〉. Thus the presence or
absence of x in the domain of σ affects neither the truth of P
nor the evaluation of 〈e, σ〉.

But there is a much more important benefit to (2) over (3).
Consider the metastatement
(B) FV(e) ⊆ FV(P).
A consequence of (2) is that (Aσ) implies (Bσ) for all σ. If P
is satisfiable at all, say by some σ, then (B) must hold, since
variables in domσ not occurring free in P can be renamed
(by an α-conversion of the second kind—see §II-A) without
affecting the truth of P . Thus (2) holds with (B) in place of
(Bσ). Moreover, since (B) is independent of σ, assuming P is
satisfiable at all, (2) is equivalent to the definition

{P} e {Q} ⇔ (B) ∧ (∀σ (Aσ)⇒ (Cσ)) (4)

Note that, unlike (Bσ) and (B′σ), the condition (B) is
syntactically checkable, thus suitable as a side condition in
a rule of inference. If we like, we may remove the condition
(B) in the definition of {P}e{Q} and instead introduce it as a
side condition in the frame rule. However, can it be eliminated
entirely? That is, is the formulation (1) sound? We show in
§IV-D that it is not. In fact, even only slightly weaker forms
of the side condition (B) do not suffice for soundness.

IV. CAPSULES AND SEPARATION LOGIC

A. Definitions

Here is our semantics for separation logic in terms of
capsules. Call closed environments σ and τ independent and
write σ ⊥ τ if their domains are disjoint. Define σ + τ to be
the join of σ and τ , provided they are independent. That is,

(σ + τ)(x) =

σ(x), if x ∈ domσ,

τ(x), if x ∈ dom τ,

undefined, otherwise.

Define separating conjunction by

σ |= P ∗Q

if there exist σ1 and σ2 such that σ = σ1 + σ2, σ1 |= P , and
σ2 |= Q. Define separating implication by

σ |= P −∗ Q

if σ + τ |= Q whenever τ |= P and σ + τ exists. It is easily
seen that capsule environments form a separation algebra in
the sense of [5] under these definitions. That is, the structure

({capsule environments}, +, ∅)

is a cancellative partial commutative monoid. This means that
+ is a commutative and associative partial binary operation
with identity ∅ satisfying the cancellative property: the partial
function + is injective in each variable. The relation σ ⊥ τ
holds if and only if σ + τ is defined.

It follows from results of [5] that separating conjunction ∗
and separating implication −∗ satisfy the usual intuitionistic
relationship: For all closed σ such that FV(P) ∪ FV(Q) ∪
FV(R) ⊆ domσ,

σ |= (P ∗Q) −∗ R ⇔ σ |= P −∗ (Q −∗ R).

Other axioms of separation logic mentioned in [21] are also
easily checked:

(P ∨Q) ∗R⇔ (P ∗R) ∨ (Q ∗R)

(P ∧Q) ∗R⇒ (P ∗R) ∧ (Q ∗R)

(∃x P) ∗Q⇔ ∃x (P ∗Q) (x 6∈ FV(Q))

(∀x P) ∗Q⇒ ∀x (P ∗Q) (x 6∈ FV(Q)).

B. The Frame Rule

The soundness of the frame rule was first proved in [24]
for the heap model of computation. Our proof is essentially
the same as the one given in [21], but somewhat shorter due
to the simplifications afforded by capsule semantics.

Lemma 4.1: If

〈e, σ1 + σ2〉
∗→ 〈e, τ〉

and FV(e) ⊆ domσ1 (that is, 〈e, σ1〉 is a capsule), then for
some τ1, 〈e, σ1〉

∗→ 〈e, τ1〉 and τ = τ1 + σ2.
Proof: By induction on the derivation. None of the small-

step evaluation rules listed in §II-B access any variable outside
the domain of σ1 except for fresh variables introduced in
the application rule. In particular, the environment σ2 is not
touched during the evaluation.

Theorem 4.2: Under capsule semantics, the frame rule

{P} e {Q}
{P ∗R} e {Q ∗R}

is sound with respect to definition (2) or (4) of partial
correctness assertions. Equivalently, the frame rule is sound
with respect to definition (1) of partial correctness assertions
in the presence of the side condition FV(e) ⊆ FV(P).

Proof: As argued in §III, in all cases we can assume
FV(e) ⊆ FV(P). Suppose {P} e {Q}. Let σ |= P ∗R. Then
σ = σ1 + σ2 with σ1 |= P and σ2 |= R. Then FV(R) ⊆
domσ2 and FV(e) ⊆ FV(P) ⊆ domσ1, therefore 〈e, σ1〉 is

a valid capsule. Since 〈e, σ〉 ∗→ 〈v, τ〉, by Lemma 4.1 there
exists τ1 such that 〈e, σ1〉

∗→ 〈v, τ1〉 and τ = τ1 + σ2, and
τ1 |= Q by the premise of the rule. Thus τ |= Q ∗R.

C. Discussion

Calcagno, O’Hearn, and Yang [5] argue that the soundness
of the frame rule for a given evaluation semantics is equivalent
to the following two properties.

Safety Monotonicity: If 〈e, σ0〉 is safe and σ = σ0 + σ1,
then 〈e, σ〉 is safe.

Frame Property: If 〈e, σ0〉 is safe, σ = σ0 + σ1, and
〈e, σ〉 ∗→ 〈e, σ′〉, then there exists σ′0 such that σ′ = σ′0 + σ1
and 〈e, σ0〉

∗→ 〈e, σ′0〉.
(Here we are allowing 〈e, σ〉 to violate the closure condi-

tions in the definition of capsules, and safe means that (B′σ)
holds.) In their words, “The first condition says that if a state
has enough resources for safe execution of a command, then
so do superstates. The second condition says that if a state
has enough resources for the command to execute safely, then
execution on any bigger state can be tracked back to the small
state.”

With capsules, the safety monotonicity property is vacu-
ously true, and the frame property reduces to Lemma 4.1.

D. Alternative Conditions

Recall from §III the side condition
(B) FV(e) ⊆ FV(P),
for which the frame rule with semantics (1) for partial cor-
rectness assertions is sound. One might ask whether there is
a weaker side condition that suffices for soundness. In this
section we show that there is not much hope.

The frame rule as stated by Reynolds has a side condition,
which says that “no variable occurring free in R is modified
by e” [21]. A literal formulation of the side condition in terms
of capsules is
(C) AV(e) ∩ FV(R) = ∅,
where AV(e), the assigned variables of e, is the set of x ∈
FV(e) having a free occurrence on the left-hand side of an
assignment :=. This is a bit confusing, because (C) seems to
serve no purpose:

Theorem 4.3:
(a) Under semantics (2) of partial correctness assertions, the

side condition (C) in the frame rule is redundant.
(b) Under semantics (1) of partial correctness assertions, the

frame rule with side condition (C) is not sound.
Proof: First (a). As argued in §III, semantics (2) is

equivalent to semantics (1) with side condition (B), provided
P is satisfiable at all. We show that in all such nontrivial
instances, (C) is subsumed by (B).

Suppose σ |= P ∗R. Then

σ = σ1 + σ2 σ1 |= P σ2 |= R.

By (B), we have

AV(e) ⊆ FV(e) ⊆ FV(P) ⊆ domσ1

and also

FV(R) ⊆ domσ2 domσ1 ∩ domσ2 = ∅,

therefore (C) holds.
For (b), we give a counterexample to soundness. Let σ

consist of the bindings

σ(f) = λ().x σ(x) = 2.

Let R = R(f) be the assertion f() = 2. Let e be the program
x := 3. Let P = Q = true. The corresponding instance of the
frame rule is

{true} x := 3 {true}
{true ∗ f() = 2} x := 3 {true ∗ f() = 2}

The premise {true} x := 3 {true} holds, but the conclusion
does not. We have

σ |= true ∗ f() = 2,

where σ = ∅ + σ, ∅ |= true, and σ |= f() = 2 and ∅ is the
empty environment. The program e does not assign to f , the
only variable free in R, yet it indirectly alters the value of f
by assigning a new value to x, making R false.

We remark that Theorem 4.3(b) holds not just for capsules,
but for any programming language with records, arrays, ob-
jects, pointers, or any form of aliasing whatsoever.

The problem at first seems to be that it is not enough to
say that no variable in FV(R) may be modified by e; we
must ensure that no variable in the closure of FV(R) may be
modified by e, so that e cannot even indirectly alter R. This
is the condition

(B1) ∀σ σ |= P ∗R⇒ AV(e) ∩ clσ(FV(R)) = ∅
which is not expressible by any syntactic property of e, P , Q,
and R.

But even this is not enough for soundness. Condition (B1)
is implied by the very strong syntactic property

(B2) AV(e) ⊆ FV(P)

which is only slightly weaker than (B). It asserts that all free
variables assigned by e are mentioned by P . Nevertheless,
even (B2) is not enough for soundness. At first this may seem
quite counterintuitive, because (B2) implies that starting in
any state satisfying P ∗R, e cannot change any variable in the
closure of FV(R), therefore cannot affect the truth of R. We
state it as a theorem.

Theorem 4.4: The frame rule under semantics (1) for partial
correctness assertions with side condition (B2) is not sound.

Proof: Let σ consist of the bindings

σ(g) = λx.2 σ(f) = λ().3.

Let R = R(f) be the assertion f() = 3. Let e be the program

g := λx.if x = 1 then f() else 2.

Let P and Q both be the assertion g(0) = 2. The correspond-
ing instance of the frame rule is

{g(0) = 2} e {g(0) = 2}
{g(0) = 2 ∗ f() = 3} e {g(0) = 2 ∗ f() = 3}

The premise {g(0) = 2} e {g(0) = 2} holds, as does the side
condition (B2), since

AV(e) = {g} = FV(P).

However, the conclusion does not. We have

σ |= g(0) = 2 ∗ f() = 3,

where σ = σ1 + σ2, domσ1 = {g}, domσ2 = {f},
σ1 |= g(0) = 2, and σ2 |= f() = 3. However, after execution
of the program e, the resulting environment binds g to a term
containing a free occurrence of f , so g and f cannot be
separated.

V. CONCLUSION AND FUTURE WORK

We were motivated to undertake this study in response to
an anonymous review of [8] claiming that capsules “contradict
the insights of separation logic, which has been extensively
researched for the last decade.” We hope that we have con-
vinced the reader that there is no contradiction whatsoever—in
fact quite the opposite! Capsules provide a novel perspective
on separation logic, because they capture the same locality
and persistence structure as traditional heap models, but in
a simpler, more mathematically tractable framework. We feel
that this has great potential for enhancing the understanding
of separation by focusing on the essentials.

In the future, we would like to investigate other structures
that have arisen in the study of separation logic in this
framework. In particular, higher-order separation logic [1]
proposes to use the much more powerful higher-order logic in
predicates. Nested Hoare triples [22] are a neat idea to specify
code stored in the heap. The anti-frame rule [17], [23] presents
a way of modeling hidden state. Finally, we would like to study
the concurrency rule [13] in the context of capsules.

ACKNOWLEDGMENTS

We would like to thank Neelakantan Krishnaswami for
suggesting that we look at the relation between capsules and
separation logic after attending a presentation of [7]. We would
also like to thank Mark Bickford, Bob Constable, and François
Pottier for many useful discussions.

REFERENCES

[1] B. Biering, L. Birkedal, and N. Torp-Smith, “BI-hyperdoctrines,
higher-order separation logic, and abstraction,” ACM Trans. Program.
Lang. Syst., vol. 29, August 2007. [Online]. Available: http:
//doi.acm.org/10.1145/1275497.1275499

[2] L. Birkedal, B. Reus, J. Schwinghammer, and H. Yang, “A
simple model of separation logic for higher-order store,” in
Proceedings of the 35th international colloquium on Automata,
Languages and Programming, Part II, ser. ICALP ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 348–360. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-70583-3 29

[3] L. Birkedal, N. Torp-Smith, and H. Yang, “Semantics of separation-logic
typing and higher-order frame rules for algol-like languages,” CoRR, vol.
abs/cs/0610081, 2006.

[4] R. Bornat, C. Calcagno, and H. Yang, “Variables as resource in separa-
tion logic,” in Proc. 21st Conf. Math. Found. Programming Semantics,
2005, pp. 247–276.

[5] C. Calcagno, P. W. O’Hearn, and H. Yang, “Local action and abstract
separation logic,” in Proc. 22nd Annual IEEE Symp. Logic in Computer
Science (LICS07). IEEE, 2007, pp. 366–378.

[6] S. S. Ishtiaq and P. W. O’Hearn, “Bi as an assertion language for
mutable data structures,” in Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ser.
POPL ’01. New York, NY, USA: ACM, 2001, pp. 14–26. [Online].
Available: http://doi.acm.org/10.1145/360204.375719

[7] J.-B. Jeannin, “Capsules and closures,” in Proc. 27th Conf. Math. Found.
Programming Semantics (MFPS XXVII), M. Mislove and J. Ouaknine,
Eds. Pittsburgh, PA: Elsevier Electronic Notes in Theoretical Computer
Science, May 2011.

[8] J.-B. Jeannin and D. Kozen, “Computing with capsules,” Computing and
Information Science, Cornell University, Tech. Rep. http://hdl.handle.
net/1813/22082, January 2011.

[9] N. R. Krishnaswami, “Verifying higher-order imperative programs with
higher-order separation logic,” Ph.D. dissertation, Carnegie Mellon Uni-
versity, 2010.

[10] N. R. Krishnaswami, L. Birkedal, J. Aldrich, and J. C. Reynolds,
“Idealized ML and its separation logic,” http://www.cs.cmu.edu/∼neelk/,
2007.

[11] I. Mason and C. Talcott, “Axiomatizing operational equivalence in the
presence of side effects,” in Fourth Annual Symposium on Logic in
Computer Science. IEEE. IEEE Computer Society Press, 1989, pp.
284–293.

[12] J. McCarthy, “History of LISP,” in History of programming languages
I, R. L. Wexelblat, Ed. ACM, 1981, pp. 173–185.

[13] P. W. O’Hearn, “Resources, concurrency and local reasoning,” Theoret-
ical Computer Science, vol. 375, no. 1-3, pp. 271–307, May 2007.

[14] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning
about programs that alter data structures,” in Proceedings of the 15th
International Workshop on Computer Science Logic, ser. CSL ’01.
London, UK: Springer-Verlag, 2001, pp. 1–19. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647851.737404

[15] M. Parkinson, R. Bornat, and C. Calcagno, “Variables as resource in
hoare logics,” in Proceedings of the 21st Annual IEEE Symposium
on Logic in Computer Science. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 137–146. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1157735.1158051

[16] M. J. Parkinson and G. M. Bierman, “Separation logic, abstraction and
inheritance,” in Proceedings of the 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ser. POPL ’08.
New York, NY, USA: ACM, 2008, pp. 75–86. [Online]. Available:
http://doi.acm.org/10.1145/1328438.1328451

[17] F. Pottier, “Hiding local state in direct style: a higher-order anti-frame
rule,” in Twenty-Third Annual IEEE Symposium on Logic In Computer
Science (LICS’08), Pittsburgh, Pennsylvania, Jun. 2008, pp. 331–340.

[18] ——, 2012, private communication.
[19] B. Reus and J. Schwinghammer, “Separation logic for higher-order

store,” in In Proc. CSL. Springer, 2006, pp. 575–590.
[20] J. C. Reynolds, “Intuitionistic reasoning about shared mutable data

structures,” in Millennial Perspectives in Computer Science, J. Davies,
B. Roscoe, and J. Woodcock, Eds. Palgrave, 2000, pp. 303–321.

[21] ——, “Separation logic: A logic for shared mutable data structures,” in
Proc. 17th IEEE Symp. Logic in Computer Science (LICS’02). IEEE,
2002, pp. 55–74.

[22] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang, “Nested Hoare
triples and frame rules for higher-order store,” in In Proceedings of the
18th EACSL Annual Conference on Computer Science Logic, 2009.

[23] J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus, “A
semantic foundation for hidden state,” in FOSSACS, 2010, pp. 2–17.

[24] H. Yang and P. W. O’Hearn, “A semantic basis for local reasoning,” in
Proc. 5th Foundations of Software Science and Computation Structures
(FOSSACS02), ser. Lecture Notes in Computer Science, M. Nielsen and
U. Engberg, Eds., vol. 2303. Springer-Verlag, 2002, pp. 402–416.

