Basic Concepts of Logic

PHIL UA-70: Logic

January 29, 2015
ARGUMENTS

- An *argument* is just a collection of reasons for believing some claim.
- We use arguments to *persuade* one another.
- The thing that the argument is arguing *for* is called the *conclusion* of the argument.
- The reasons which are presented in the conclusion’s favor are called the *premises* of the argument.
ARGUMENTS

- An *argument* is just a collection of reasons for believing some claim.
- We use arguments to *persuade* one another.
- The thing that the argument is arguing *for* is called the *conclusion* of the argument.
- The reasons which are presented in the conclusion’s favor are called the *premises* of the argument.
An argument is just a collection of reasons for believing some claim.

We use arguments to persuade one another.

The thing that the argument is arguing for is called the conclusion of the argument.

The reasons which are presented in the conclusion’s favor are called the premises of the argument.
ARGUMENTS

- An argument is just a collection of reasons for believing some claim.
- We use arguments to persuade one another.
- The thing that the argument is arguing for is called the conclusion of the argument.
- The reasons which are presented in the conclusion’s favor are called the premises of the argument.
A Sample Argument?

- An argument about gay marriage
- Is Perkins providing an argument?
- If so, what is his argument?
- Russert:

1. Gay marriage is morally tantamount to polygamy
2. Polygamy is wrong.
3. So, gay marriage is wrong.
A SAMPLE ARGUMENT?

- An argument about gay marriage
- Is Perkins providing an argument?
- If so, what is his argument?
- Russert:

 1. Gay marriage is morally tantamount to polygamy
 2. Polygamy is wrong.
 3. So, gay marriage is wrong.
A Sample Argument?

- An argument about gay marriage
- Is Perkins providing an argument?
- If so, what is his argument?
- Russert:

 1. Gay marriage is morally tantamount to polygamy
 2. Polygamy is wrong.
 3. So, gay marriage is wrong.
A Sample Argument?

- An argument about gay marriage
- Is Perkins providing an argument?
- If so, what is his argument?
- Russert:

1. Gay marriage is morally tantamount to polygamy
2. Polygamy is wrong.
3. So, gay marriage is wrong.
A Sample Argument?

- An argument about gay marriage
- Is Perkins providing an argument?
- If so, what is his argument?
- Russert:

 1. Gay marriage is morally tantamount to polygamy
 2. Polygamy is wrong.
 3. So, gay marriage is wrong.
A Sample Argument?

- Some interpreted Perkins as making this argument:

 1. Legalizing gay marriage will lead to the legalization of polygamy.
 2. We ought not legalize polygamy.
 3. So, we ought not legalize gay marriage.

- So understood, Perkins is making a claim about the likely causal consequences of legalizing gay marriage.
- This would be (what we will later call) a slippery slope argument.
A SAMPLE ARGUMENT?

- Some interpreted Perkins as making this argument:

 1. Legalizing gay marriage will lead to the legalization of polygamy.
 2. We ought not legalize polygamy.
 3. So, we ought not legalize gay marriage.

- So understood, Perkins is making a claim about the likely causal consequences of legalizing gay marriage.

- This would be (what we will later call) a slippery slope argument.
A Sample Argument?

- Some interpreted Perkins as making this argument:

1. Legalizing gay marriage will lead to the legalization of polygamy.
2. We ought not legalize polygamy.
3. So, we ought not legalize gay marriage.

- So understood, Perkins is making a claim about the likely causal consequences of legalizing gay marriage.
- This would be (what we will later call) a slippery slope argument.
A Sample Argument?

- But perhaps we should understanding him as making a claim, not about the likely causal consequences, but rather about what we implicitly commit ourselves to by thinking that we ought to legalize gay marriage:

1. If we ought to legalize gay marriage, then we ought to legalize polygamy.
2. We ought not legalize polygamy.
3. So, we ought not legalize gay marriage.
A SAMPLE ARGUMENT?

- Maybe Perkins is merely providing an objection to a premise in somebody else’s argument, i.e.,

1. If all loving relationships deserve the rights of marriage, then loving polygamous relationships deserve the rights of marriage.
2. Loving polygamous relationships don’t deserve the rights of marriage.
3. So, not all loving relationships deserve the rights of marriage.
A Sample Argument?

- good objections to one of these arguments are not necessarily good objections to any of the others.
- So, what we ought to say about Perkins' statements will depend upon how we ought understand them.
- Lesson: before we get to evaluating arguments, it is important to figure out whether the person is making an argument, and, if so, what the argument is.
A Sample Argument?

- good objections to one of these arguments are not necessarily good objections to any of the others.
- So, what we ought to say about Perkins’ statements will depend upon how we ought understand them.
- Lesson: before we get to evaluating arguments, it is important to figure out whether the person is making an argument, and, if so, what the argument is.
A Sample Argument?

- good objections to one of these arguments are not necessarily good objections to any of the others.
- So, what we ought to say about Perkins’ statements will depend upon how we ought understand them.
- Lesson: before we get to evaluating arguments, it is important to figure out whether the person is making an argument, and, if so, what the argument is.
Logic

- Logic is the study of arguments.
 - Its goal: to give a theory of which arguments are good and which are bad
 - Also, perhaps, to give an explanation of why the good arguments are good, and why the bad arguments are bad.
 - An argument $\overset{\text{def}}{=} a$ collection of statements, one of which is designated as the conclusion, the others of which are designated as the premises.
 - So, this will count as an argument:
 1. Bacon isn’t meat.
 2. Samuel Huntington is spry.
 3. Summer will never come.
 4. So, Elmer Fudd isn’t fictional.
Logic

- Logic is the study of arguments.
 - Its goal: to give a theory of which arguments are good and which are bad
 - Also, perhaps, to give an explanation of why the good arguments are good, and why the bad arguments are bad.

- An argument $\overset{\text{def}}{=} a$ collection of statements, one of which is designated as the conclusion, the others of which are designated as the premises.

- So, this will count as an argument:

 1. Bacon isn’t meat.
 2. Samuel Huntington is spry.
 3. Summer will never come.
 4. So, Elmer Fudd isn’t fictional.
Logic

- Logic is the study of arguments.
 - Its goal: to give a theory of which arguments are good and which are bad
 - Also, perhaps, to give an explanation of why the good arguments are good, and why the bad arguments are bad.

- An argument $\overset{\text{def}}{=} \text{a collection of statements, one of which is designated as the conclusion, the others of which are designated as the premises.}$

- So, this will count as an argument:

 1. Bacon isn’t meat.
 2. Samuel Huntington is spry.
 3. Summer will never come.
 4. So, Elmer Fudd isn’t fictional.
Logic

- Logic is the study of arguments.
 - Its goal: to give a theory of which arguments are good and which are bad
 - Also, perhaps, to give an explanation of why the good arguments are good, and why the bad arguments are bad.

- An argument $\overset{\text{def}}{=} a$ collection of statements, one of which is designated as the conclusion, the others of which are designated as the premises.

- So, this will count as an argument:
 1. Bacon isn’t meat.
 2. Samuel Huntington is spry.
 3. Summer will never come.
 4. So, Elmer Fudd isn’t fictional.
Logic

- Logic is the study of arguments.
 - Its goal: to give a theory of which arguments are good and which are bad
 - Also, perhaps, to give an explanation of *why* the good arguments are good, and *why* the bad arguments are bad.

- An argument \(\overset{\text{def}}{=}\) a collection of statements, one of which is designated as the *conclusion*, the others of which are designated as the *premises*.

- So, this will count as an argument:
 1. Bacon isn’t meat.
 2. Samuel Huntington is spry.
 3. Summer will never come.
 4. So, Elmer Fudd isn’t fictional.
Statements

- A *statement* is a sentence which is capable of being true or false.
 - Not statements: Questions, commands, suggestions, and exclamations.

A Test

Given some sentence, P, if ‘It is true that P’ makes sense, then P is a statement. If ‘It is true that P’ does not make sense, then P is not a statement.

- ‘It is true that I ate my car keys’ ✓
- ‘It is true that try jiggling the handle’ ×
Statements

- A *statement* is a sentence which is capable of being true or false.
 - Not statements: Questions, commands, suggestions, and exclamations.

A Test

Given some sentence, P, if ‘It is true that P’ makes sense, then P is a statement. If ‘It is true that P’ does not make sense, then P is not a statement.

- ‘It is true that I ate my car keys’ ✓
- ‘It is true that try jiggling the handle’ ✗
STATEMENTS

- A *statement* is a sentence which is capable of being true or false.
 - Not statements: Questions, commands, suggestions, and exclamations.

A Test

Given some sentence, P, if ‘It is true that P’ makes sense, then P is a statement. If ‘It is true that P’ does not make sense, then P is not a statement.

- ‘It is true that I ate my car keys’ ✓
- ‘It is true that try jiggling the handle’ ×
Statements

- A *statement* is a sentence which is capable of being true or false.
 - Not statements: Questions, commands, suggestions, and exclamations.

A Test

Given some sentence, P, if ‘It is true that P’ makes sense, then P is a statement. If ‘It is true that P’ does not make sense, then P is not a statement.

- ‘It is true that I ate my car keys’ ✓
- ‘It is true that try jiggling the handle’ ×
STATEMENTS

- A *statement* is a sentence which is capable of being true or false.
 - Not statements: Questions, commands, suggestions, and exclamations.

A Test

Given some sentence, P, if ‘It is true that P’ makes sense, then P is a statement. If ‘It is true that P’ does not make sense, then P is not a statement.

- ‘It is true that I ate my car keys’ ✓
- ‘It is true that try jiggling the handle’ ×
STATEMENTS

- A statement is a sentence which is capable of being true or false.
 - Not statements: Questions, commands, suggestions, and exclamations.

A Test

Given some sentence, P, if ‘It is true that P’ makes sense, then P is a statement. If ‘It is true that P’ does not make sense, then P is not a statement.

- ‘It is true that I ate my car keys’ ✓
- ‘It is true that try jiggling the handle’ ✗
Statements

- A statement is a sentence which is capable of being true or false.
 - Not statements: Questions, commands, suggestions, and exclamations.

A Test
Given some sentence, P, if ‘It is true that P’ makes sense, then P is a statement. If ‘It is true that P’ does not make sense, then P is not a statement.

- ‘It is true that I ate my car keys’ ✓
- ‘It is true that try jiggling the handle’ ×
Finding Argumentative Structure

- It is not always obvious whether the passage constitutes an argument or not
- Given that it is an argument, it is not always obvious which sentences are premises, which are conclusions, and which sentences are extraneous
- Indicator Words
- Conclusion indicators

therefore,
this entails that
consequently,

hence,
as a result,
accordingly,

so,
for this reason,
this implies that

thus,
we may conclude
this entails that
Finding Argumentative Structure

- It is not always obvious whether the passage constitutes an argument or not
- Given that it is an argument, it is not always obvious which sentences are premises, which are conclusions, and which sentences are extraneous

Indicator Words

- Conclusion indicators:
 - therefore,
 - hence,
 - so,
 - consequently,
 - as a result,
 - accordingly,
 - for this reason,
 - this implies that
 - thus,
 - we may conclude
 - this entails that
Finding Argumentative Structure

- It is not always obvious whether the passage constitutes an argument or not
- Given that it is an argument, it is not always obvious which sentences are premises, which are conclusions, and which sentences are extraneous
- Indicator Words
 - Conclusion indicators
It is not always obvious whether the passage constitutes an argument or not.

Given that it is an argument, it is not always obvious which sentences are premises, which are conclusions, and which sentences are extraneous.

Indicator Words

Conclusion indicators

therefore, hence, so, thus,
this entails that as a result, for this reason, we may conclude
consequently, accordingly, this implies that this entails that
Finding Argumentative Structure

- It is not always obvious whether the passage constitutes an argument or not.
- Given that it is an argument, it is not always obvious which sentences are premises, which are conclusions, and which sentences are extraneous.
- Indicator Words
- Conclusion indicators

therefore, hence, so, thus,
this entails that as a result, for this reason, we may conclude
consequently, accordingly, this implies that this entails that
Finding Argumentative Structure

- Premise Indicators

 since for as because
 given that owing to in that for the reason that
 seeing that seeing as as is shown by may be inferred from
FINDING ARGUMENTATIVE STRUCTURE

- Premise Indicators

since for as because
given that owing to in that for the reason that
seeing that seeing as as is shown by may be inferred from
FINDING ARGUMENTATIVE STRUCTURE

- To determine whether an author is making an argument, consider their goals. Do they want to...
 - persuade? Then they’re making an argument.
 - convey information? Then they’re not making an argument.
 - explain why something occurred? Then they’re not making an argument.
 - tell a story? Then they’re not making an argument.
 - E.g.,

 Since the moon’s gravity is less than that of the earth, astronauts on the moon’s surface were able to jump higher than they could on earth.

 Sabeen is visiting New York because her company was hired to do a workshop there.
To determine whether an author is making an argument, consider their goals. Do they want to...

- persuade? Then they’re making an argument.
- convey information? Then they’re not making an argument.
- explain why something occurred? Then they’re not making an argument.
- tell a story? Then they’re not making an argument.

E.g.,

Since the moon’s gravity is less than that of the earth, astronauts on the moon’s surface were able to jump higher than they could on earth.

Sabeen is visiting New York because her company was hired to do a workshop there.
To determine whether an author is making an argument, consider their goals. Do they want to...
- persuade? Then they’re making an argument.
- convey information? Then they’re not making an argument.
- explain why something occurred? Then they’re not making an argument.
- tell a story? Then they’re not making an argument.

E.g.,

Since the moon’s gravity is less than that of the earth, astronauts on the moon’s surface were able to jump higher than they could on earth.

Sabeen is visiting New York because her company was hired to do a workshop there.
FINDING ARGUMENTATIVE STRUCTURE

- To determine whether an author is making an argument, consider their goals. Do they want to...
 - persuade? Then they’re making an argument.
 - convey information? Then they’re not making an argument.
 - explain why something occurred? Then they’re not making an argument.
 - tell a story? Then they’re not making an argument.
- E.g.,

 Since the moon’s gravity is less than that of the earth, astronauts on the moon’s surface were able to jump higher than they could on earth.

 Sabeen is visiting New York because her company was hired to do a workshop there.
To determine whether an author is making an argument, consider their goals. Do they want to...

- persuade? Then they’re making an argument.
- convey information? Then they’re not making an argument.
- explain why something occurred? Then they’re not making an argument.
- tell a story? Then they’re not making an argument.

E.g.,

Since the moon's gravity is less than that of the Earth, astronauts on the moon's surface were able to jump higher than they could on Earth.

Sabeen is visiting New York because her company was hired to do a workshop there.
FINDING ARGUMENTATIVE STRUCTURE

- To determine whether an author is making an argument, consider their goals. Do they want to...
 - persuade? Then they’re making an argument.
 - convey information? Then they’re not making an argument.
 - explain why something occurred? Then they’re not making an argument.
 - tell a story? Then they’re not making an argument.
- E.g.,

 Since the moon’s gravity is less than that of the earth, astronauts on the moon’s surface were able to jump higher than they could on earth.

 Sabeen is visiting New York because her company was hired to do a workshop there.
Finding Argumentative Structure

- To determine whether an author is making an argument, consider their goals. Do they want to...
 - persuade? Then they’re making an argument.
 - convey information? Then they’re not making an argument.
 - explain why something occurred? Then they’re not making an argument.
 - tell a story? Then they’re not making an argument.
- E.g.,

 Since the moon’s gravity is less than that of the earth, Astronauts on the moon’s surface were able to jump higher than they could on earth.

Sabeen is visiting New York because her company was hired to do a workshop there.
FINDING ARGUMENTATIVE STRUCTURE

- To determine whether an author is making an argument, consider their goals. Do they want to...
 - persuade? Then they’re making an argument.
 - convey information? Then they’re not making an argument.
 - explain why something occurred? Then they’re not making an argument.
 - tell a story? Then they’re not making an argument.

- E.g.,

 Since the moon’s gravity is less than that of the earth, astronauts on the moon’s surface were able to jump higher than they could on earth.

Sabeen is visiting New York because her company was hired to do a workshop there.
The Principle of Charity

When searching for argumentative structure within a passage, attempt to find the argument which is most persuasive.
We must give up some privacy in the name of security. If the homeland is not secure, terrorist attacks orders of magnitudes larger than 9/11 will find their way to our shores. No amount of privacy is worth enduring an attack like this.
1. We must give up some privacy in the name of security.
2. If the homeland is not secure, terrorist attacks orders of magnitude larger than 9/11 will find their way to our shores.
3. So, no amount of privacy is worth enduring an attack like this.
Finding Argumentative Structure

1. We must give up some privacy in the name of security.
2. No amount of privacy is worth enduring an attack orders of magnitude larger than 9/11.
3. So, if the homeland is not secure, terrorist attacks like this will find their way to our shores.
1. If the homeland is not secure, terrorist attacks orders of magnitude larger than 9/11 will find their way to our shores.
2. No amount of privacy is worth enduring an attack like this.
3. So, we must give up some privacy in the name of security.
Each card below has a letter printed on one side and a number printed on the other side.

9 J U 2

Claim: every card obeys the following rule:

If there is a vowel printed on one side of the card, then there is an even number printed on the other.

Which cards do you have to flip over in order to figure out whether the claim is true or false?
CONDITIONALS

- Each card below has a letter printed on one side and a number printed on the other side.

- Claim: every card obeys the following rule

Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

- Which cards do you have to flip over in order to figure out whether the claim is true or false?
Conditionals

Each card below has a letter printed on one side and a number printed on the other side.

9 J U 2

Claim: every card obeys the following rule

Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

Which cards do you have to flip over in order to figure out whether the claim is true or false?
Each card below has a letter printed on one side and a number printed on the other side.

9 J U 2

Claim: every card obeys the following rule

Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

Which cards do you have to flip over in order to figure out whether the claim is true or false?
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

Which cards do we have to turn over in order to discover whether the rule is being obeyed?

- All of them?
- Just ‘U’ and ‘2’?
- Just ‘9’ and ‘U’?
- Just ‘J’ and ‘U’?
Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

- Which cards do we have to turn over in order to discover whether the rule is being obeyed?
 - All of them?
 - Just ‘U’ and ‘2’?
 - Just ‘9’ and ‘U’?
 - Just ‘J’ and ‘U’?
Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

Which cards do we have to turn over in order to discover whether the rule is being obeyed?

- All of them?
- Just ‘U’ and ‘2’?
- Just ‘9’ and ‘U’?
- Just ‘J’ and ‘U’?
Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

- Which cards do we have to turn over in order to discover whether the rule is being obeyed?
 - All of them?
 - Just ‘U’ and ‘2’?
 - Just ‘9’ and ‘U’?
 - Just ‘J’ and ‘U’?
Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

- Which cards do we have to turn over in order to discover whether the rule is being obeyed?
 - All of them?
 - Just ‘U’ and ‘2’?
 - Just ‘9’ and ‘U’?
 - Just ‘J’ and ‘U’?
Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

- Which cards do we have to turn over in order to discover whether the rule is being obeyed?
 - All of them?
 - Just ‘U’ and ‘2’?
 - Just ‘9’ and ‘U’?
 - Just ‘J’ and ‘U’?
Rule
If there is a vowel printed on one side of the card, then there is an even number printed on the other.

- Which cards do we have to turn over in order to discover whether the rule is being obeyed?
 - All of them?
 - Just ‘U’ and ‘2’?
 - Just ‘9’ and ‘U’?
 - Just ‘J’ and ‘U’?
Rule

If there is a vowel printed on one side of the card, then there is an even number printed on the other.

- Which cards do we have to turn over in order to discover whether the rule is being obeyed?
 - All of them?
 - Just ‘U’ and ‘2’?
 - Just ‘9’ and ‘U’?
 - Just ‘J’ and ‘U’?
Each card has an age printed on one side and a beverage printed on the other.

Rule
If the age on one side is less than 21, then the drink on the other side must not be alcoholic.

- Which cards do we have to turn over in order to find out whether the rule is being obeyed?
CONDITIONALS

- Claims of the form

 \[\text{If } \text{blah}, \text{ then } \text{bleh.} \]

 are called *conditionals*.

- These claims tell you that, conditional on \(P \) being true, you may infer that \(Q \) is true as well.

- They say that the truth of \(P \) is *sufficient* for the truth of \(Q \).

- Alternatively: they say that the truth of \(Q \) is *necessary* for the truth of \(P \).
CONDITIONALS

- Claims of the form

 If P, then Q.

 are called conditionals.

- These claims tell you that, conditional on P being true, you may infer that Q is true as well.

- They say that the truth of P is sufficient for the truth of Q.

- Alternatively: they say that the truth of Q is necessary for the truth of P.
CONDITIONALS

- Claims of the form

 \[\text{If } P, \text{ then } Q. \]

 are called *conditionals*.

- These claims tell you that, conditional on \(P \) being true, you may infer that \(Q \) is true as well.

 - They say that the truth of \(P \) is *sufficient* for the truth of \(Q \).
 - Alternatively: they say that the truth of \(Q \) is *necessary* for the truth of \(P \).
CONDITIONALS

- Claims of the form

 If P, then Q.

 are called *conditionals*.

- These claims tell you that, conditional on P being true, you may infer that Q is true as well.

- They say that the truth of P is *sufficient* for the truth of Q.

- Alternatively: they say that the truth of Q is *necessary* for the truth of P.

CONDITIONALS

- Claims of the form

 \[
 \text{If } P, \text{ then } Q.
 \]

 are called *conditionals*.

- These claims tell you that, conditional on \(P \) being true, you may infer that \(Q \) is true as well.

- They say that the truth of \(P \) is *sufficient* for the truth of \(Q \).

- Alternatively: they say that the truth of \(Q \) is *necessary* for the truth of \(P \).
Necessary and Sufficient Conditions

- X is sufficient for Y if and only if everything which is X is also Y.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- X is necessary for Y if and only if everything which is Y is also X.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- X is sufficient for Y if and only if Y is necessary for X.
NECESSARY AND SUFFICIENT CONDITIONS

- **X** is sufficient for **Y** if and only if everything which is **X** is also **Y**.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- **X** is necessary for **Y** if and only if everything which is **Y** is also **X**.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- **X** is sufficient for **Y** if and only if **Y** is necessary for **X**.
NECESSARY AND SUFFICIENT CONDITIONS

- **X is sufficient for Y if and only if** everything which is X is also Y.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- **X is necessary for Y if and only if** everything which is Y is also X.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- **X is sufficient for Y if and only if Y is necessary for X.**
NECESSARY AND SUFFICIENT CONDITIONS

- X is sufficient for Y if and only if everything which is X is also Y.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- X is necessary for Y if and only if everything which is Y is also X.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- X is sufficient for Y if and only if Y is necessary for X.
NECESSARY AND SUFFICIENT CONDITIONS

- **X** is sufficient for **Y** if and only if everything which is **X** is also **Y**.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- **X** is necessary for **Y** if and only if everything which is **Y** is also **X**.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.
 - **X** is sufficient for **Y** if and only if **Y** is necessary for **X**.
NECESSARY AND SUFFICIENT CONDITIONS

▪ X is sufficient for Y if and only if everything which is X is also Y.
 ▪ Being older than 21 is sufficient for being legally allowed to drink.
 ▪ Everyone who is older than 21 is also legally allowed to drink.
 ▪ Being square is sufficient for being rectangular.
 ▪ Everything which is square is also rectangular.

▪ X is necessary for Y if and only if everything which is Y is also X.
 ▪ Being European is necessary for being French.
 ▪ Everyone who is French is also European.
 ▪ Being a triangle is necessary for being an equilateral triangle.
 ▪ Every equilateral triangle is also a triangle.

▪ X is sufficient for Y if and only if Y is necessary for X.
NECESSARY AND SUFFICIENT CONDITIONS

- X is sufficient for Y if and only if everything which is X is also Y.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- X is necessary for Y if and only if everything which is Y is also X.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- X is sufficient for Y if and only if Y is necessary for X.
NECESSARY AND SUFFICIENT CONDITIONS

▶ X is sufficient for Y if and only if everything which is X is also Y.
 ▶ Being older than 21 is sufficient for being legally allowed to drink.
 ▶ Everyone who is older than 21 is also legally allowed to drink.
 ▶ Being square is sufficient for being rectangular.
 ▶ Everything which is square is also rectangular.

▶ X is necessary for Y if and only if everything which is Y is also X.
 ▶ Being European is necessary for being French.
 ▶ Everyone who is French is also European.
 ▶ Being a triangle is necessary for being an equilateral triangle.
 ▶ Every equilateral triangle is also a triangle.

▶ X is sufficient for Y if and only if Y is necessary for X.
NECESSARY AND SUFFICIENT CONDITIONS

- X is sufficient for Y if and only if everything which is X is also Y.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- X is necessary for Y if and only if everything which is Y is also X.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- X is sufficient for Y if and only if Y is necessary for X.
NECESSARY AND SUFFICIENT CONDITIONS

- **X is sufficient for Y if and only if everything which is X is also Y.**
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- **X is necessary for Y if and only if everything which is Y is also X.**
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- X is sufficient for Y if and only if Y is necessary for X.
NECESSARY AND SUFFICIENT CONDITIONS

- X is sufficient for Y if and only if everything which is X is also Y.
 - Being older than 21 is sufficient for being legally allowed to drink.
 - Everyone who is older than 21 is also legally allowed to drink.
 - Being square is sufficient for being rectangular.
 - Everything which is square is also rectangular.

- X is necessary for Y if and only if everything which is Y is also X.
 - Being European is necessary for being French.
 - Everyone who is French is also European.
 - Being a triangle is necessary for being an equilateral triangle.
 - Every equilateral triangle is also a triangle.

- X is sufficient for Y if and only if Y is necessary for X.
Necessary and Sufficient Conditions

- N is necessary for S.
- S is sufficient for N.
Necessary and Sufficient Conditions

- N is necessary for S.
- S is sufficient for N.
CONDITIONALS

- ‘If P, then Q’ says that P is sufficient for Q.
- The only way this could be false is if P isn’t sufficient for Q.
CONDITIONALS

- ‘If P, then Q’ says that P is sufficient for Q.
- The only way this could be false is if P isn’t sufficient for Q.
CONDITIONALS

Rule

If there is a vowel printed on one side of the card, then there is an even number printed on the other.
The card has an even number
x
The card has a vowel

9 J U 2

Deductive Validity

- Here’s one way for an argument to be good: the truth of all of its premises could guarantee the truth of its conclusion.
 - If all of the argument’s premises are true, then its conclusion will be true as well.

Deductive Validity

An argument is **deductively valid** if and only if the truth of all of its premises is sufficient for the truth of its conclusion.

Deductive Validity

An argument is **deductively valid** if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.
Here’s one way for an argument to be good: the truth of all of its premises could guarantee the truth of its conclusion.

- If all of the argument’s premises are true, then its conclusion will be true as well.

An argument is **deductively valid** if and only if the truth of all of its premises is sufficient for the truth of its conclusion.

An argument is **deductively valid** if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.
Here’s one way for an argument to be good: the truth of all of its premises could guarantee the truth of its conclusion.

- If all of the argument’s premises are true, then its conclusion will be true as well.

Deductive Validity

An argument is **deductively valid** if and only if the truth of all of its premises is sufficient for the truth of its conclusion.

Deductive Validity

An argument is **deductively valid** if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.
Deductive Validity

Here’s one way for an argument to be good: the truth of all of its premises could guarantee the truth of its conclusion.

- If all of the argument’s premises are true, then its conclusion will be true as well.

Deductive Validity

An argument is **deductively valid** if and only if the truth of all of its premises is sufficient for the truth of its conclusion.

Deductive Validity

An argument is **deductively valid** if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.
** Deductive Validity **

- Some deductively valid arguments:

 1. If Obama is president, then he is the commander in chief.
 2. Obama is president.
 3. So, Obama is the commander in chief.

 1. Gerald is either in Barcelona or in New York.
 2. Gerald is not in New York.
 3. So, Gerald is in Barcelona.

 1. Sabeen is younger than 30.
 2. So, Sabeen is younger than 40.
DEDUCTIVE VALIDITY

- Some deductively valid arguments:

1. If Obama is president, then he is the commander in chief.
2. Obama is president.
3. So, Obama is the commander in chief.

1. Gerald is either in Barcelona or in New York.
2. Gerald is not in New York.
3. So, Gerald is in Barcelona.

1. Sabeen is younger than 30.
2. So, Sabeen is younger than 40.
Deductive Validity

- Deductively valid arguments can have false premises.
- Deductively valid arguments can have false conclusions.
- What matters is just the connection between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, whether or not the premises actually are true.
- If all of the premises of a deductively valid argument are all true, then we say that the argument is sound.

Deductive Soundness

An argument is **deductively sound** if and only if it is deductively valid and it has all true premises.
Deductive Validity

- *Deductively valid arguments can have false premises.*
- Deductively valid arguments can have false conclusions.
- What matters is just the *connection* between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, *whether or not the premises actually are true.*
- If all of the premises of a deductively valid argument are all true, then we say that the argument is *sound.*

Deductive Soundness

An argument is *deductively sound* if and only if it is deductively valid and it has all true premises.
Deductive Validity

- **Deductively valid arguments can have false premises.**
- Deductively valid arguments can have false conclusions.
- What matters is just the *connection* between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, *whether or not the premises actually are true.*
- If all of the premises of a deductively valid argument are all true, then we say that the argument is *sound.*

Deductive Soundness

An argument is **deductively sound** if and only if it is deductively valid and it has all true premises.
Deductive Validity

- Deductively valid arguments can have false premises.
- Deductively valid arguments can have false conclusions.
- What matters is just the connection between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, whether or not the premises actually are true.
- If all of the premises of a deductively valid argument are all true, then we say that the argument is sound.

Deductive Soundness
An argument is deductively sound if and only if it is deductively valid and it has all true premises.
Deductive Validity

▶ Deductively valid arguments can have false premises.
▶ Deductively valid arguments can have false conclusions.
▶ What matters is just the connection between the premises and the conclusion.
▶ If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, whether or not the premises actually are true.
▶ If all of the premises of a deductively valid argument are all true, then we say that the argument is sound.

Deductive Soundness

An argument is deductively sound if and only if it is deductively valid and it has all true premises.
Deductive Validity

- Deductively valid arguments can have false premises.
- Deductively valid arguments can have false conclusions.
- What matters is just the connection between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, whether or not the premises actually are true.
- If all of the premises of a deductively valid argument are all true, then we say that the argument is sound.

Deductive Soundness
An argument is deductively sound if and only if it is deductively valid and it has all true premises.
Deductive Validity

- Deductively valid arguments can have false premises.
- Deductively valid arguments can have false conclusions.
- What matters is just the connection between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, whether or not the premises actually are true.
- If all of the premises of a deductively valid argument are all true, then we say that the argument is sound.

Deductive Soundness

An argument is deductively sound if and only if it is deductively valid and it has all true premises.
Deductive Validity

- *Deductively valid arguments can have false premises.*
- *Deductively valid arguments can have false conclusions.*
- What matters is just the connection between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, *whether or not the premises actually are true.*
- If all of the premises of a deductively valid argument are all true, then we say that the argument is *sound.*

Deductive Soundness

An argument is *deductively sound if and only if it is deductively valid and it has all true premises.*
Deductive Validity

- *Deductively valid arguments can have false premises.*
- *Deductively valid arguments can have false conclusions.*
- What matters is just the *connection* between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, *whether or not the premises actually are true.*
- If all of the premises of a deductively valid argument are all true, then we say that the argument is *sound.*

Deductive Soundness

An argument is *deductively sound* if and only if it is deductively valid and it has all true premises.
Deductive Validity

- *Deductively valid arguments can have false premises.*
- *Deductively valid arguments can have false conclusions.*
- What matters is just the *connection* between the premises and the conclusion.
- If the truth of the premises is enough to guarantee the truth of the conclusion, then the argument is valid, *whether or not the premises actually are true.*
- If all of the premises of a deductively valid argument are all true, then we say that the argument is *sound.*

Deductive Soundness

An argument is deductively sound if and only if it is deductively valid and it has all true premises.
In Class Exercise!!!
Special Cases of Validity

Deductive Validity

An argument is **deductively valid** if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.

- If it is impossible for an argument’s premises to all be true, then it is impossible for all of an arguments premises to be true while its conclusion is false.

- So this is a deductively valid argument:

 1. It is raining.
 2. It is not raining.
 3. So, chocolate falls from the sky every Thursday.
SPECIAL CASES OF VALIDITY

Deductive Validity

An argument is **deductively valid** if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.

- If it is impossible for an argument’s premises to all be true, then it is impossible for all of an arguments premises to be true while its conclusion is false.
- So this is a deductively valid argument:

 1. It is raining.
 2. It is not raining.
 3. So, chocolate falls from the sky every Thursday.
SPECIAL CASES OF VALIDITY

Deductive Validity

An argument is deductively valid *if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.*

- If it is impossible for an argument’s conclusion to be false, then it is impossible for all of the argument’s premises to be true while its conclusion is false.

- So this is a deductively valid argument:
 1. Barack Obama is a space alien.
 2. Sunday follows Friday.
 3. So, if it’s raining, then it’s raining.
Special Cases of Validity

Deductive Validity

An argument is **deductively valid** if and only if it is impossible for all of its premises to be true while its conclusion is simultaneously false.

- If it is impossible for an argument’s conclusion to be false, then it is impossible for all of the argument’s premises to be true while its conclusion is false.
- So this is a deductively valid argument:
 1. Barack Obama is a space alien.
 2. Sunday follows Friday.
 3. So, if it’s raining, then it’s raining.
Not every persuasive argument is *deductively valid*.

Consider, for instance,

1. Every morning, the sun has risen in the east.
2. So, tomorrow, the sun will rise in the east.

Is this argument deductively valid?

No, but it is still *very* persuasive. It’s still a *very* good argument.
Not every persuasive argument is \textit{deductively valid}.

Consider, for instance,

1. Every morning, the sun has risen in the east.

3. So, tomorrow, the sun will rise in the east.

Is this argument deductively valid?

No, but it is still \textit{very} persuasive. It’s still a \textit{very} good argument.
Not every persuasive argument is *deductively valid*. Consider, for instance,

1. Every morning, the sun has risen in the east.
3. So, tomorrow, the sun will rise in the east.

Is this argument deductively valid?

No, but it is still *very* persuasive. It’s still a *very* good argument.
Not every persuasive argument is *deductively valid*.

Consider, for instance,

1. Every morning, the sun has risen in the east.
2. So, tomorrow, the sun will rise in the east.

Is this argument deductively valid?

No, but it is still *very* persuasive. It’s still a *very* good argument.
Inductive Strength

- If an argument’s conclusion is probable, given the truth of its premises, then that argument is *inductively strong*.

Inductive Strength

An argument is inductively strong to the extent that the truth of its conclusion is probable given the truth of its premises.

- Inductive strength is, therefore, a matter of degree.

Inductive Strength

If \(\Pr(\text{conclusion} \mid \text{premises}) = x \), *then* the strength of the argument from premises to conclusion is \(x \).

- Say that an argument is *strong*, as opposed to *not strong*, iff \(x > 0.5 \).
Inductive Strength

If an argument’s conclusion is probable, given the truth of its premises, then that argument is *inductively strong*.

Inductive Strength

An argument is inductively strong to the extent that the truth of its conclusion is probable given the truth of its premises.

- Inductive strength is, therefore, a matter of degree.

Inductive Strength

If $\Pr(\text{conclusion} \mid \text{premises}) = x$, then the strength of the argument from premises to conclusion is x.

- Say that an argument is *strong*, as opposed to *not strong*, iff $x > 0.5$.
INDUCTIVE STRENGTH

- If an argument’s conclusion is probable, given the truth of its premises, then that argument is inductively strong.

Inductive Strength

An argument is inductively strong to the extent that the truth of its conclusion is probable given the truth of its premises.

- Inductive strength is, therefore, a matter of degree.

Inductive Strength

If \(\Pr(\text{conclusion} \mid \text{premises}) = x \), then the strength of the argument from premises to conclusion is \(x \).

- Say that an argument is strong, as opposed to not strong, iff \(x > 0.5 \).
If an argument's conclusion is probable, given the truth of its premises, then that argument is *inductively strong*.

Inductive Strength

An argument is inductively strong to the extent that the truth of its conclusion is probable given the truth of its premises.

- Inductive strength is, therefore, a matter of degree.

Inductive Strength

If $Pr(\text{conclusion} \mid \text{premises}) = x$, then the strength of the argument from premises to conclusion is x.

- Say that an argument is *strong*, as opposed to *not strong*, iff $x > 0.5$.
Inductive Strength

- If an argument’s conclusion is probable, given the truth of its premises, then that argument is *inductively strong*.

Inductive Strength

An argument is inductively strong to the extent that the truth of its conclusion is probable given the truth of its premises.

- Inductive strength is, therefore, a matter of degree.

Inductive Strength

If $\Pr(\text{conclusion} \mid \text{premises}) = x$, then the strength of the argument from premises to conclusion is x.

- Say that an argument is *strong*, as opposed to *not strong*, iff $x > 0.5$.
If an inductively strong argument has all true premises, then it is *inductively cogent*.

Inductive Cogency

An argument is inductively cogent if and only if it is inductively strong and it has all true premises.
If an inductively strong argument has all true premises, then it is inductively cogent.

Inductive Cogency

An argument is inductively cogent if and only if it is inductively strong and it has all true premises.