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Abstract
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treatment and control units, reweighting estimators are preferred on bias grounds and attain
the semiparametric efficiency bound even for samples of size 100. Pair matching exhibits sim-
ilarly good performance in terms of bias, but has notably higher variance. Local linear and
ridge matching are competitive with reweighting in terms of bias and variance, but only once
n = 500. Nearest-neighbor, kernel, and blocking matching are not competitive. When overlap
is close to failing, none of the estimators examined perform well and

√
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be a poor guide to finite sample performance. Trimming rules, commonly used in the face of
problems with overlap, are effective only in settings with homogeneous treatment effects.
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I Introduction

This paper explores the finite sample properties of semiparametric estimators of average treatment

effects. Such estimators are standard in the program evaluation literature and have become increas-

ingly popular in the applied microeconometric literature. These estimators rely on two assumptions.

The first assumption is that assignment to treatment is randomized conditional on a set of observed

covariates. The second assumption is more technical and asserts that no value of the observed co-

variates assures treatment assignment.1 Intuitively, these assumptions allow for treatment to covary

with observed characteristics, but require that there be some unexplained variation in treatment

assignment left over after conditioning and that the unexplained aspect of treatment resembles an

experiment.2

Estimation of program impacts under these assumptions could proceed using traditional para-

metric estimation methods such as maximum likelihood. However, an early result of Rosenbaum

and Rubin (1983) is that if treatment is randomized conditionally on the observed covariates, then it

is randomized conditional on the (scalar) propensity score, the conditional probability of treatment

given the observed covariates. Influenced by this result, the subsequent econometric and statistical

literatures have focused on semiparametric estimators that eschew parametric assumptions on the

relationship between the outcome and observed covariates. Empirical literatures, particularly in

economics, but also in medicine, sociology and other disciplines, feature an extraordinary number

of program impact estimates based on such semiparametric estimators.

Perhaps surprisingly in light of their ubiquity in empirical work, formal large sample results

for these estimators have only recently been derived in the literature. Heckman, Ichimura and

Todd (1997) report large sample properties of estimators based on kernel and local linear matching

on the true and an estimated propensity score. Hirano, Imbens and Ridder (2003) report large

sample properties of a reweighting estimator that uses a nonparametric estimate of the propensity

score. This is essentially the same reweighting estimator that was introduced to the economics

literature by DiNardo, Fortin and Lemieux (1996) and Dehejia and Wahba (1997), and it is related

to an estimator due to Horvitz and Thompson (1952). Importantly, Hirano et al. (2003) establish

that their version of a reweighting estimator achieves the semiparametric efficiency bound (SEB)

established by Hahn (1998) for this problem. Robins, Rotnitzky and Zhao (1994) and Robins

and Rotnitzky (1995) establish large sample properties and the efficiency of a regression-adjusted

reweighting estimator that uses the estimated propensity score. Finally, Abadie and Imbens (2006)

establish the large sample properties and near-efficiency of kth nearest-neighbor matching using the

1Selection on observed variables is defined in Section II, as is the second assumption, which is typically referred to
as an overlap assumption. In Section III, we emphasize the correct interpretation of selection on observed variables
using a specific parametric model.

2In other words, there exists an instrument which is unobserved by the researcher.
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true propensity score.3

To date, no formal finite sample properties have been established for any of the estimators

discussed, and there is limited simulation evidence on their performance. It is generally desirable

to learn about the finite sample properties of estimators used in empirical research, since not all

data sets are big enough for asymptotic theory to be a useful guide to estimator properties. It is

particularly desirable to learn about the finite sample properties of semiparametric estimators of

average treatment effects, given the literature’s substantive focus on treatment effect heterogeneity.4

In the face of heterogeneity, treatment effects must effectively be estimated for various subsamples.5

For many economic data sets, these subsamples are modest in size, perhaps numbering in the

hundreds or even dozens, where asymptotic theory may be a particularly poor guide to finite sample

performance.

In this paper, we examine the relative performance of several leading semiparametric estimators

of average treatment effects in samples of size 100 and 500.6 We focus on the performance of propen-

sity score reweighting and matching estimators for estimating the average treatment effect (ATE)

and the average effect of treatment on the treated (TOT). We consider a range of matching strate-

gies, including nearest neighbor, kernel, local linear, and ridge matching, and blocking. We also

consider several varieties of reweighting estimators, the so-called double robust estimator (Robins

et al. 1994), and a specific version of Hahn’s (1998) general estimator, which we term a control

function estimator. We consider settings with good overlap in the distribution of propensity scores

for treatment and control units, as well as settings of poor overlap. In settings of poor overlap,

we investigate the performance of various trimming methods proposed and used in the literature.

Finally, we consider the implications for performance of misspecification of the propensity score,

both in terms of an incorrect parametric model for treatment as well as conditioning on the wrong

set of covariates.

A summary of our findings is as follows. First, reweighting is approximately unbiased and

3It deserves mention that Chen, Hong and Tarozzi (2008) study the large sample properties and efficiency of sieve
estimators in this setting. We do not study the finite sample properties of these estimators due to space constraints.

4Understanding the sources of treatment effect heterogeneity is critical if the analyst hopes to extrapolate from
the findings of a given study to broader forecasts of the likely impacts of policies not yet implemented. These issues
are a key focus of the program evaluation literature (see, for example, Heckman and Vytlacil 2005 and Heckman,
Urzua and Vytlacil 2006).

5Importantly, the intrinsic dimensionality of treatment effect heterogeneity cannot be massaged by appealing
to the dimension reduction of the propensity score. The Rosenbaum and Rubin (1983) result that a conditionally
randomized treatment is randomized conditional on the scalar propensity score has been interpreted as justification for
matching on the propensity score rather than on the full set of covariates. However, the Rosenbaum and Rubin result
does not imply that units with the same value of the propensity score have the same treatment effect. Examples
of empirical investigation of treatment effect heterogeneity along dimensions different from the propensity score
include Card (1996), Katz, Kling and Liebman (2001), Haviland and Nagin (2005) and Kent and Hayward (2008),
for example.

6This issue has been previously taken up by Lunceford and Davidian (2004), ?, Zhao (2004), Zhao (2008), and
Freedman and Berk (2008).
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semiparametrically efficient, even for sample sizes of 100. Our assessment is that reweighting exhibits

the best overall finite sample performance of any of the estimators we consider. Second, pair

matching shares the good bias performance of reweighting, but has a variance that is roughly 30

percent greater than that of reweighting. Third, kth nearest-neighbor matching, with k chosen by

leave-one-out cross-validation, does reduce the excessive variance of pair matching, but at the cost

of substantially greater bias. Fourth, kernel, local linear, and ridge matching perform similarly to

k-th nearest neighbor matching in exhibiting little variance but much bias when n = 100. Once

n = 500, ridge and local linear matching are both competitive with reweighting on bias and variance

grounds.7 Fifth, both in terms of bias and variance, the popular blocking matching estimator

performs neither as badly as kth nearest-neighbor and kernel matching, nor as well as local linear

and ridge matching, and is generally dominated by reweighting. Sixth, the double robust estimator

is competitive with reweighting, but appears to be slightly more variable and slightly more biased.

Seventh, the control function estimator is approximately unbiased, even for samples of size 100, and

is approximately semiparametrically efficient once n = 500. Eighth, when there is misspecification

of the propensity score either due to parametric assumptions or the lack of availability of important

covariates, the relative performance of the estimators is approximately as described above. However,

in that context, if problems with bias are suspected and variance is less important, pair matching

is the preferred estimator.

The above conclusions hold when the propensity score model is correctly specified and when

there is good overlap in the distribution of propensity scores for treatment and control units. Our

investigations highlight the problems with semiparametric estimators of average treatment effects

when overlap is poor. Khan and Tamer (2007) emphasize this point from a theoretical perspective,

noting that when overlap is poor the semiparametric efficient bound derived by Hahn (1998) for

this problem can be infinite, leading to a failure of
√
n-consistency. Consistent with this conclusion,

our results indicate that when overlap is poor, none of the estimators studied work well. In cases

where overlap is poor, although technically sufficient to guarantee
√
n-consistency, we document

poor performance for n = 100, but adequate performance for n = 500. This suggests that larger

sample sizes may be needed for threshold cases.

A standard empirical approach to problems with overlap is to trim observations with extreme

values of the propensity score. We investigate four of the trimming strategies used in the literature.

Our simulations suggest that some of these procedures can be effective but only in situations in

which the treatment effect is similar for all the observations in the sample. Finally, we provide

evidence that as problems with overlap arise, the limiting distribution of semiparametric estimators

becomes nonstandard.

Our conclusions run contrary to those of the existing literature on the finite sample performance

7All three of these kernel-based estimators use leave-one-out cross-validation to select a bandwidth, and this model
selection issue may be an important aspect of performance for smaller sample sizes.
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of reweighting and matching. Our simulations indicate that reweighting is a generally robust es-

timator whose performance in small samples is as effective as in large samples, where it has been

shown to be optimal in a certain sense. The matching methods we consider work poorly for samples

of size 100, although some of the methods become effective for samples of size 500. In contrast

to these findings, the existing finite sample literature is generally negative regarding reweighting

and tends to conclude that matching estimators are best. We review this literature. We show

that nearly all of the results from the existing finite sample literature are based on data generating

processes (DGPs) for which
√
n-consistent semiparametric estimators do not exist, or DGPs where

√
n-consistency is close to failing. Our own investigations are unusual, in that we focus on DGPs

where semiparametric estimators are expected to perform well. We show that this difference in

DGPs accounts for our different conclusions.8

The remainder of the paper is organized as follows. Section II sets notation, defines estimators,

discusses estimands and efficiency bounds, and emphasizes the connections among the many esti-

mators we consider by casting them in the common framework of weighted regression. In particular,

this section provides a 3-step interpretation of matching that clarifies the conceptual similarities

and differences between the two approaches. In Section III, we describe our benchmark DGP. This

DGP is chosen so that semiparametric estimates of average treatment effects are
√
n-consistent.

Results for the benchmark DGP are presented in Section IV. In Section V, we take up the issue

of DGPs for which
√
n-consistency may be compromised. Results for such DGPs are presented in

V. Section VII compares our results to those of the existing finite sample literature. Section VIII

concludes.

II Notation and Background

Let Yi(1) denote the outcome for unit i that would obtain under treatment and Yi(0) the outcome

that would obtain under control. Treatment is denoted by the binary variable Ti. We observe

Yi = TiYi(1)+(1−Ti)Yi(0), but never the pair (Yi(0), Yi(1)). The data (Xi, Yi, Ti)
n
i=1 are taken to be

independent across i, but are potentially heteroscedastic. Let the propensity score, the conditional

probability of treatment, be denoted p(x) ≡ P (Ti = 1|Xi = x). Let the covariate-specific average

treatment effect by denoted τ(x) = E[Yi(1)− Yi(0)|Xi = x].

We focus on the relative performance of semiparametric estimators of population averages of

τ(x). Here, semiparametric means an estimator that models the relationship between the proba-

bility of receiving treatment and the covariates Xi, but remains agnostic regarding the relationship

between the counterfactual outcomes (Yi(0), Yi(1)) and the covariates.

8To be clear, we do not advocate the use of reweighting estimators—or any of the estimators studied here—in
settings of failure and near failure of

√
n-consistency of semiparametric estimators of average treatment effects. At

present, relatively little is known about appropriate estimation and testing procedures in these settings.
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Semiparametric estimators of treatment effects are typically justified by an appeal to (1) selec-

tion on observed variables and (2) sufficient overlap. Selection on observed variables means that

treatment is randomized given Xi, or that (Yi(0), Yi(1), Zi)⊥⊥Ti|Xi, where Zi is any characteristic

of the individual that is not affected by treatment assignment (e.g. pre-program earnings).9This

assumption has traditionally been referred to as selection on observed variables in the economics

literature (e.g., Heckman and Robb 1985). In the statistics and more recent econometrics literature

this assumption is instead referred to as ignorability or unconfoundedness (e.g., Rosenbaum and

Rubin 1983, Imbens 2004).10

Selection on observed variables is not by itself sufficient to semiparametrically identify average

treatment effects. The DGPs we focus on in Section IV are consistent with both selection on

observed variables and a strict overlap assumption: ξ < p(x) < 1 − ξ for almost every x in the

support of Xi, for some ξ > 0. This assumption is stronger than the standard overlap assumption

that 0 < p(x) < 1 for almost every x in the support of Xi (e.g., Rosenbaum and Rubin 1983,

Heckman et al. 1997, Hahn 1998, Wooldridge 2002, Imbens 2004, Todd 2007), but is also common

in the literature (e.g., Robins et al. 1994, Abadie and Imbens 2006, 2008, Crump, Hotz, Imbens

and Mitnik 2007a,b). Both the standard overlap and the strict overlap assumptions are strong.

Khan and Tamer (2007) emphasize that something akin to the strict overlap assumption is needed

to deliver
√
n-consistency of semiparametric estimators in this context. We take up the issue of

DGPs that violate strict overlap, but satisfy standard overlap, in Sections V and VI, below.

A Estimands and Estimators

As noted, we focus on the performance of estimators for target parameters that are averages of

τ(x). The specific averages we consider are the average treatment effect α = E[τ(Xi)] and the

average treatment effect on the treated θ = E[τ(Xi)|T = 1]. We refer to these estimands as ATE

and TOT, respectively. Although we focus on the performance of estimators for these estimands,

we emphasize that ATE and TOT are not the only estimands of interest. However, the performance

of these estimators for ATE and TOT is likely to be similar to the performance of these estimators

when adapted to estimation of other averages of τ(x).

We consider fourteen estimators: nine matching estimators, three reweighting estimators (some-

times termed inverse propensity score weighting estimators, or IPW), one control function estimator,

and the so-called double robust estimator.11 Each of these estimators are two-step estimators re-

9Notice that some pre-program covariates may be affected by anticipation of treatment.
10? (2005) shows that some control variables may be influenced by the treatment. However, this endogeneity

does not matter for consistency of the treatment effect estimator, as long as the usual formulation of the conditional
independence assumption holds.

11The breadth of coverage arises from an attempt to encompass many of the estimators used in the literature as
well as to be consistent with previous finite sample evidence on the topic. Nonetheless, there are of course other
potentially effective estimators whose performance is not covered by the analysis here.
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lying on a first-step estimate of the propensity score. The nine matching estimators include pair

matching, kth nearest neighbor matching, kernel matching, local linear matching, ridge regression

matching, and blocking. Aside from pair matching, each of these matching strategies employs a

cross-validation method for choosing a tuning parameter. Kernel, local linear, and ridge matching

all further require the choice of a kernel. Following ?, we consider both the Epanechnikov kernel

and the Gaussian kernel.

The three reweighting estimators include a reweighting estimator in which the sum of the weights

is allowed to be stochastic (IPW1), a reweighting estimator in which the sum of the weights is forced

to be 1 (IPW2), and an asymptotically optimal combination of the former two estimators (IPW3)

that is due to Lunceford and Davidian (2004).

We also consider the so-called double robust estimator due to Robins and Rotnitzky (1995),

which has recently received a good deal of attention in the literature (e.g., Imbens 2004). This

procedure can be thought of as a regression-adjusted version of reweighting. The regression ad-

justments are more similar in spirit to an older approach to the problem of estimating treatment

effects. We complete our analysis by studying the performance of a control function estimator. This

estimator is essentially the same as the double robust estimator, but is unweighted. The version of

the control function estimator we implement models the regression function of the outcome given

the covariates and treatment status as a polynomial in the estimated propensity score, with addi-

tive and possibly interacted terms for treatment status. This procedure is described in Wooldridge

(2002) for the case of ATE, and is in the spirit of Oaxaca (1973) and Blinder (1973) decompositions

and Hahn’s (1998) general estimator.

While it is true that at least some versions of reweighting and matching are believed to be

semiparametrically efficient in large samples, and while both approaches are based on the same first-

step propensity score estimate, it is far from clear that the two approaches would perform similarly

in finite samples. First, most matching estimators rely on tuning parameters. It is possible that use

of tuning parameters could improve finite sample performance relative to reweighting. Second, the

approaches take advantage of very different properties of the propensity score. Matching requires of

the estimated propensity score only that it be a balancing score (Rosenbaum and Rubin 1983). In

contrast, reweighting requires that the propensity score be a conditional probability. For example,

matching on the square root of the propensity score should work just as well as matching on

propensity score; in contrast, reweighting with the square root of the propensity score should do

badly.

B Weighted Least Squares as a Unifying Framework

Both matching and reweighting estimators of average treatment effects can be understood as the

coefficient on the treatment indicator in a weighted regression, with weighting functions that differ

6



by estimator. This common structure clarifies that the essential difference between the estimators

is the weighting function implicitly used.

That reweighting estimators have this form is widely understood. A general notation for

reweighting estimators for the TOT and ATE is

θ̂ =
1

n1

n∑
i=1

TiYi −
1

n0

n∑
j=1

(1− Tj)Yjw(j), (1)

α̂ =
1

n1

n∑
i=1

TiYiw1(i)− 1

n0

n∑
j=1

(1− Tj)Yjw0(j). (2)

The weights in equations (1) and (2) only add up to one for some versions of reweighting estimators.

When the TOT weights add up to one in the sense of 1
n0

∑n
j=1(1− Tj)w(j) = 1, the TOT estimate

can be obtained using standard statistical software from the coefficient on treatment in a regression

of the outcome on a constant and a treatment indicator using weights W = T + (1−T )w(·). When

the weights do not add up to one, the TOT estimate can be calculated directly using equation

(1). When the ATE weights add up to one in the sense that 1
n0

∑n
j=1(1 − Tj)w0(j) = 1 and

1
n1

∑n
j=1 Tjw1(j) = 1, the ATE estimate can be obtained from the same regression described, but

with weights W = Tw1(·) + (1−T )w0(·). The reweighting estimators we consider are characterized

below by enumerating the weighting functions used.

Weights Used for Reweighting Estimators
Effect Treatment, t Estimator Weighting Function wt(j)

TOT 1 IPW1
p̂(Xj)

1−p̂(Xj)

/
p̂

1−p̂

TOT 1 IPW2
p̂(Xj)

1−p̂(Xj)

/
1
n0

∑n
k=1

(1−Tk)p̂(Xk)
1−p̂(Xk)

TOT 1 IPW3
p̂(Xj)

1−p̂(Xj)
(1− Cj)

/
1
n0

∑n
k=1

(1−Tk)p̂(Xk)
1−p̂(Xk)

(1− Ck)
ATE 0 IPW1 1−p̂

1−p̂(Xj)

ATE 1 IPW1 p̂
p̂(Xj)

ATE 0 IPW2 1
1−p̂(Xj)

/
1
n0

∑n
k=1

1−Tk

1−p̂(Xk)

ATE 1 IPW2 1
p̂(Xj)

/
1
n1

∑n
k=1

Tk

p̂(Xk)

ATE 0 IPW3 1
1−p̂(Xj)

(1− C0
j )
/

1
n0

∑n
k=1

1−Tk

1−p̂(Xk)
(1− C0

k)

ATE 1 IPW3 1
p̂(Xj)

(1− C1
j )
/

1
n1

∑n
k=1

Tk

p̂(Xk)
(1− C1

k)

Note: p̂ ≡ n1

n
, Ai = 1−Ti

1−p̂(Xi)
, Bi = Ti

p̂(Xi)
, Ci =

“
1− p̂(Xi)

p̂
Ai

”
1
n

Pn
j=1

„
1−

p̂(Xj)

p̂
Aj

«
1
n

Pn
j=1

„
1−

p̂(Xj)

p̂
Aj

«2 ,

C0
i =

1
1−p̂(Xi)

1
n

Pn
j=1(Aj p̂(Xj)−Ti)

1
n

Pn
j=1(Aj p̂(Xj)−Ti)

2 and C1
i =

1
p̂(Xi)

1
n

Pn
j=1(Bj(1−p̂(Xj))−(1−Ti))

1
n

Pn
j=1(Bj(1−p̂(Xj))−(1−Ti))

2 , which are

IPW3 correction factors that are small when the propensity score model is well specified.

The functional form given by IPW1 can be found in many treatments in the literature (e.g.,
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Dehejia and Wahba 1997, Wooldridge 2002, Hirano et al. 2003). IPW2 is advocated by Johnston

and DiNardo (1996) and Imbens (2004). Since most applied work is based on regression software,

which naturally rescales weights, most estimates in the empirical literature are probably IPW2.

With a well-specified propensity score model, the weights used in IPW1 should nearly add up

to one and IPW1 and IPW2 should not differ dramatically. This is because, ignoring estimation

error in p̂(Xi) and p̂, iterated expectations shows that E[Wi] = 1 for both TOT and ATE. However,

in finite samples for some DGPs, the sum of the weights can depart substantially from 1. Unlike

IPW2, IPW3 is not commonly implemented in the empirical literature. This estimator, derived

by Lunceford and Davidian (2004) for the case of ATE, is the (large sample) variance-minimizing

linear combination of IPW1 and IPW2.12

While it is widely understood that reweighting estimators can be implemented as a weighted

regression, it is less widely understood that matching estimators share this property.13 We demon-

strate that matching estimators are weighted regressions for the case of TOT.14 A general notation

for a matching estimator of the TOT is (cf., Smith and Todd 2005, eq. 10)

θ̂ =
1

n1

∑
i∈I1

{
Yi −

∑
j∈I0

w(i, j)Yj

}
, (3)

where w(i, j) is the weight that the control observation j is assigned in the formation of an estimated

counterfactual for the treated observation i, I1 is the set of n1 treated units and I0 is the set of n0

control units. The weights w(i, j) are in general a function of the distance in the covariates. In

the case of propensity score matching, that distance is measured by the difference in the estimated

propensity scores. We now describe the matching estimators we consider by enumerating the TOT

weighting functions w(i, j).15

12The TOT version of IPW3 is new, but follows straightforwardly, if tediously, from the approach outlined by
those authors (see Appendix I for details).

13However, there are clear antecedents in the literature. For example equations (3) and (4) of Abadie and Imbens
(2006) clarify this common structure.

14The case of ATE then follows since a matching estimator for the ATE is a convex combination of the average
treatment effect for the treated and for the untreated, with convex parameter equal to the fraction treated.

15The notation is as follows: Jk(i) is the set of k estimated propensity scores among the control observations
that are closest to p̂(Xi), ∆̂ij = p̂(Xi) − p̂(Xj), Kij = K(∆̂ij

/
h) for K(·) a kernel function and h a bandwidth,

Lpi =
∑
j∈I0 Kij∆̂

p
ij , for p = 1, 2, ∆̃ij = p̂(Xj) − p(Xi), pi =

∑
j∈I0 pjKij

/∑
j∈I0 Kij , rL is an adjustment factor

suggested by Fan (1993), rR is an adjustment factor suggested by Seifert and Gasser (2000), Bm is an interval such
as [0, 0.2] that gives the mth block for the blocking estimator, and M is the number of blocks used. For a Gaussian
kernel, rL = 0 and for an Epanechnikov kernel, rL = 1/n2. For a Gaussian kernel, rR = 0.35 and for an Epanechnikov
kernel, rR = 0.31.
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Weights Used for Matching Estimators for TOT
Estimator Weighting Function w(i, j)
kth Nearest Neighbor 1

k
1(p̂(Xj)∈Jk(i))

Kernel Kij

/∑
j∈I0 Kij

Local Linear
(
KijL

2
i −Kij∆̂ijL

1
i

)/∑
j∈I0

(
KijL

2
i −Kij∆̂ijL

1
i + rL

)
Ridge Kij

/∑
j∈I0 Kij + ∆̃ij

/∑
j∈I0

(
Kij∆̃

2
ij + rRh|∆̃ij|

)
Blocking

∑M
m=1 1(p̂(Xi)∈Bm)1(p̂(Xj)∈Bm)

/∑M
m=1 1(p̂(Xj)∈Bm)

All of the matching estimators enumerated can be understood as the coefficient on the treatment

indicator in a weighted regression. To see this, rewrite

θ̂ =
1

n1

n∑
i=1

Ti

{
Yi −

n∑
j=1

w(i, j)(1− Tj)Yj

}

=
1

n1

n∑
i=1

TiYi −
n∑
j=1

(1− Tj)Yj
1

n1

n∑
i=1

w(i, j)Ti

≡ 1

n1

n∑
i=1

TiYi −
1

n0

n∑
j=1

(1− Tj)Yjw(j), (4)

where w(j) = n0

n1

∑n
i=1 w(i, j)Ti is proportional to the average weight that a control observation is

given, on average across all treatment observations.16 Viewing matching estimators as weighted

least squares is useful as a means of understanding the relationships among the various estimators

used in the literature. For example, the weight used by kernel matching can be written as

w(j) =
n0

n1

n∑
i=1

Tiw(i, j) =

∑n
i=1 TiKij

/∑n
i=1 Kij∑n

j=1(1− Tj)Kij

/∑n
i=1Kij

/
p̂

1− p̂
.

Ignoring estimation error in the propensity score,
∑n

i=1 TiKij

/∑n
i=1Kij is a kernel regression

estimate of P (Ti = 1|p(Xi) = p(Xj)), which is equivalent to p(Xj).
17 If the kernel in ques-

tion is symmetric, then
∑n

i=1(1− Ti)Kij

/∑n
i=1Kij is similarly a kernel regression estimate of

P (Ti = 0|p(Xi) = p(Xj)), which is equivalent to 1 − p(Xj). Thus, for kernel matching with a

16The matching estimators proposed in the literature require no normalization on the weights involved in the second
sum in equation (4). This follows because the matching estimators that have been proposed define the weighting
functions w(i, j) in such a way that

∑
j∈I0 w(i, j)Yj is a legitimate average of the controls, in that sense that for

every treated unit i,
∑
j∈I0 w(i, j) =

∑n
j=1 w(i, j)(1− Tj) = 1. This has the important implication that the weights

in the second sum of equation (4) automatically add up to one:

1
n0

n∑
j=1

(1− Tj)w(j) =
1
n0

n∑
j=1

{
(1− Tj)

[
n0

n1

n∑
i=1

w(i, j)Ti

]}
=

1
n1

n∑
i=1

Ti
∑
j∈I0

w(i, j)

 =
1
n1

n∑
i=1

Ti = 1.

17Generally, if X and Y are random variables such that m(X) = E[Y |X] exists, then E[Y |m(X)] = m(X) by
iterated expectations.
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symmetric kernel, we have

w(j) ≈ p(Xj)

1− p(Xj)

/
p

1− p
,

which is the same as the target parameter of the TOT weight used by reweighting.

This result provides a 3-step interpretation to symmetric kernel matching for the TOT:

1. Estimate the propensity score, p̂(Xi)

2. For each observation j in the control group, compute p(Xj) =
∑n

i=1 TiKij

/∑n
i=1Kij. In

words, this is the fraction treated among those with propensity scores near p̂(Xj). Under
smoothness assumptions on p(Xi), this will be approximately p̂(Xj).

3. Form the weight w(j) =
(
p(Xj)

/
(1− p(Xj)

)/ (
p̂
/

(1− p̂)
)

and run a weighted regression of

Yi on a constant and Ti with weight Wi = Ti + (1− Ti)w(i).

Reweighting differs from this procedure in that, in step 2, it directly sets p(Xj) = p̂(Xj). The

simulation suggests that this shortcut is effective at improving small sample performance.

C Mixed Methods

We also consider the performance of an estimator known as “double robust” that is neither reweight-

ing nor matching but is a hybrid procedure combining reweighting with more traditional regression

techniques. This procedure is discussed by Robins and Rotnitzky (1995) in the related context of

imputation for missing data. Imbens (2004) provides a good introductory treatment.

To describe the intuition behind this estimator, we first return to a characterization of reweight-

ing. The essential idea behind reweighting is that in large samples, reweighting ensures orthogonal-

ity between the treatment indicator and any possible function of the covariates. That is, for any

bounded continuous function g(·),

E [g(Xi)|Ti = 1] = E

[
g(Xi)

p(Xi)

1− p(Xi)

/ p

1− p

∣∣∣Ti = 0

]
,

E

[
g(Xi)

p

p(Xi)

∣∣∣Ti = 1

]
= E

[
g(Xi)

1− p
1− p(Xi)

∣∣∣Ti = 0

]
= E [g(Xi)] . (5)

This implies that the joint distribution of Xi is equal in weighted subsamples defined by Ti = 1

and Ti = 0, using either TOT or ATE weights.18 This in turn implies that in the reweighted

sample, treatment is unconditionally randomized, and estimation can proceed by computing the

(reweighted) difference in means, as described in subsection B, above. A standard procedure in esti-

mating the effect of an unconditionally randomized treatment is to include covariates in a regression

18Given the standard overlap assumption, this result follows from iterated expectations. A proof for the case of
TOT is given in McCrary (2007, fn. 35).
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of the outcome on a constant and a treatment indicator. It is often argued that this procedure im-

proves the precision of estimated treatment effects. By analogy with this procedure, a reweighting

estimator may enjoy improved precision if the weighted regression of the outcome on a constant

and a treatment indicator is augmented by covariates.

The estimator just described is the double robust estimator. Reweighting computes average

treatment effects by running a weighted regression of the outcome on a constant and a treatment

indicator. Double robust estimation computes average treatment effects by running a weighted

regression of the outcome on a constant, a treatment indicator, and some function of the covariates

such as the propensity score.

The gain in precision associated with moving from a reweighting estimator to a double robust

estimator is likely modest with economic data.19 However, a potentially important advantage is

that the estimator is more likely to be consistent, in a particular sense. Suppose that the model

for the treatment equation is misspecified, but that the model for the outcome equation is correctly

specified. Then the double robust estimator would retain consistency, despite the misspecification

of the treatment equation model.20 We implement the double robust estimator by including the

estimated propensity score linearly into the regression model, for both ATE and TOT.21

The double robust estimator is related to another popular estimator that we call a control

function estimator. For the case of ATE, the control function estimator is the slope coefficient on

a treatment indicator in a regression of the outcome on a constant, the treatment indicator, and

functions of the covariates Xi. For the case of TOT, we obtain the control function estimator by

running a regression of the outcome on a constant and a cubic in the propensity score, separately by

treatment status.22 For each model, we form predicted values, and compute the average difference

in predictions, among the treated observations. This procedure is in the spirit of the older Oaxaca

(1973) and Blinder (1973) procedure and is related to the general estimator proposed by Hahn

(1998).

19Suppose the goal is to obtain a percent reduction of q in the standard error on the estimated treatment effect.
Approximate the standard error of the treatment effect by the spherical variance matrix least squares formula. Then
reducing the standard error of the estimated treatment effect by q percent requires reducing the regression root mean
squared error by q percent, since the “matrix part” of the standard error is affected only negligibly by the inclusion
of covariates, due to the orthogonality noted in equation (5). This requires reducing the regression mean squared
error (MSE) by roughly 2q percent when q is small. A 2q percent reduction in the regression MSE requires that
the F -statistic on the exclusion of the added covariates be a very large 2qn/K, where n is the overall sample size
and K is the number of added covariates. Consider one of the strongest correlations observed in economic data,
that between log-earnings and education. In a typical U.S. Census file with 100,000 observations, the t-ratio on
the education coefficient in a log-earnings regression is about 100 (cf., Card 1999). The formula quoted suggests
that including education as a covariate with an outcome of log earnings would improve the standard error on a
hypothetical treatment indicator by only 5 percent.

20In the case described, the double robust estimator would be consistent, but inefficient relative to a regression-
based estimator with no weights, by the Gauss-Markov Theorem.

21We include the p̂(Xi) rather than Xi because the outcome equation in our DGPs is a function of p(Xi).
22In simulations not shown, we computed the MSE for the control function estimator in which the propensity score

entered in a polynomial of order 1,...,5. The cubic polynomial had the lowest MSE on average across contexts.
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D Tuning Parameter Selection

The more complicated matching estimators require choosing tuning parameters. Kernel-based

matching estimators require selection of a bandwidth, nearest-neighbor matching requires choosing

the number of neighbors, and blocking requires choosing the blocks.

In order to select both the bandwidth h to be used in the kernel-based matching estimators

and the number of neighbors to be utilized in nearest neighbor matching, we implement a simple

leave-one-out cross-validation procedure that chooses h as

h∗ = arg min
h∈H

∑
i∈I0

[Yi − m̂−i (p (Xi))]
2 ,

where m̂−i (p (Xi)) is the predicted outcome for observation i, computed with observation i removed

from the sample, and m (·) is the non-parametric regression function implied by each matching pro-

cedure. For kernel, local linear and ridge matching the bandwidth search grid H is 0.01× |κ| 1.2g−1

for g = 1, 2, ..., 29,∞. For nearest-neighbor matching the grid H is {1, 2, ..., 20, 21, 25, 29, ..., 53,∞}
for a sample size smaller than 500 and {1, 2, 5, 8, .., 23, 28, 33, ..., 48, 60, 80, 100,∞} for 500 or more

observations.23

For the blocking estimator, we first stratify the sample into M blocks defined by intervals of the

estimated propensity score. We continue to refine the blocks until within each block we cannot reject

the null that the expected propensity score among the treated is equal to the expected propensity

score among the controls (Rosenbaum and Rubin 1983, Dehejia and Wahba 1999). In order to

perform this test we used a simple t-test with a 99 percent confidence level. Once the sample is

stratified, we can compute the average difference between the outcome of treated and control units

that belong to each block, τ̂m. Finally, the blocking estimator computes the weighted average of τ̂m

across M blocks, where the weights are the proportion of observations in each block, either overall

(ATE) or among the treated only (TOT).

E Efficiency Bounds

In analyzing the performance of the estimators we study, it useful to have an idea of a lower bound

on the variance of the various estimators for a given model. Estimators which attain a variance

lower bound are best, in a specific sense.

We consider two variants of efficiency bounds. The first of these is the Cramér-Rao lower bound,

which can be calculated given a fully parametric model. The semiparametric models motivating

the estimators under study in this paper do not provide sufficient detail on the putative DGP to

23For more details on this procedure see Stone (1974) and Black and Smith (2004) for an application.
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allow calculation of the Cramér-Rao bound. Nonetheless, since we assign the DGP in this study,

we can calculate the Cramér-Rao bound using this knowledge. This forms a useful benchmark.

For example, we will see that in some models, the variance of a semiparametric estimator is only

slightly greater than the Cramér-Rao bound. These are then models in which there is little cost to

discarding a fully parametric model in favor of a semiparametric model.

The second efficiency bound we calculate is the semiparametric efficiency bound. These bounds

can be viewed as the smallest variance that can be obtained without imposing parametric assump-

tions on the outcome equation. Alternatively, the SEB can be viewed as the least upper bound

of the Cramér-Rao bounds, among the set of DGPs consistent with the parametric assumptions

placed on the treatment equation. An introductory discussion of the SEB concept is given in Newey

(1990). Hahn (1998, Theorems 1, 2) shows that under selection on observed variables and standard

overlap, the SEB is given by

SEBATE
k/u = E

[
σ2

1(Xi)

p(Xi)
+

σ2
0(Xi)

1− p(Xi)
+ (τ(Xi)− α)2

]
, (6)

SEBTOT
u = E

[
σ2

1(Xi)p(Xi)

p2
+
σ2

0(Xi)p(Xi)
2

p2 (1− p(Xi))
+
p(Xi)

p2
(τ(Xi)− θ)2

]
, (7)

SEBTOT
k = E

[
σ2

1(Xi)p(Xi)

p2
+
σ2

0(Xi)p(Xi)
2

p2 (1− p(Xi))
+
p(Xi)

2

p2
(τ(Xi)− θ)2

]
, (8)

where the subindex l = k, u indicates whether the propensity score is known or unknown and σ2
t (Xi)

is the conditional variance of Yi(t) given Xi.

Reweighting using a nonparametric estimate of the propensity score achieves the bounds in

equations (6) and (7), as shown by Hirano et al. (2003) for both the ATE and TOT case. Nearest

neighbor matching on covariates using a Euclidean norm also achieves these bounds when the

number of matches is large. Abadie and Imbens (2006, Theorem 5) demonstrate this for the case of

ATE and the case of TOT follows from the machinery they develop.24 However, nearest neighbor

matching is inconsistent when there is more than one continuous covariate to be matched.

Efficiency results for other matching estimators are not yet available in the literature. In Ap-

pendix II we provide a derivation of the SEB for the models used in our simulations. In Appendix

Table A6 we show the SEB and the CRLB for all of the data generating processes used in this

paper. We turn now to a description of these models.

24Using their equation (13) and the results of the unpublished proof of their Theorem 5, it is straightforward to
derive the large sample variance of the kth nearest-neighbor matching estimator for the TOT as

SEBTOTu +
1
2k
E

[
σ2

0(Xi)
p

(
1

1− p(Xi)
− (1− p(Xi))

)]
−−−−→
k →∞ SEBTOTu (9)
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III Data Generating Process

The DGPs we consider are all special cases of the latent index model

T ∗i = η + κXi − ui, (10)

Ti = 1 (T ∗i > 0) , (11)

Yi = βTi + γm(p(Xi)) + δTim(p(Xi)) + εi, (12)

where ui and εi are independent of Xi and of each other, m(·) is a curve to be discussed, and

p(Xi) is the propensity score implied by the model, or the probability of treatment given Xi. The

covariate Xi is taken to be distributed standard normal. Our focus is on cross-sectional settings, so

εi is independent across i, but potentially heteroscedastic. This is achieved by generating ei as an

independent and identically distributed standard normal sequence and then generating

εi = ψ (eip(Xi) + eiTi) + (1− ψ)ei. (13)

We consider several different distributional assumptions for the treatment assignment equation

residual, ui. As we discuss in more detail in Sections V and VI below, the choice of distribution

for ui can be relevant to both the finite and large sample performance of average treatment effect

estimators. Let the distribution function for ui be denoted generally by F (·). Then the propensity

score is given by

p(Xi) ≡ P (T ∗i > 0) = F (η + κXi). (14)

The model given in equations (10) through (12) nests a basic latent index regression model, in

which treatment effects vary with Xi but are homogeneous, residuals are homoscedastic, and the

conditional expectation of the outcome under control is white noise. The model is flexible, how-

ever, and can also accommodate heterogeneous treatment effects, heteroscedasticity, and nonlinear

response functions.

Heterogeneity of treatment effects is controlled by the parameter δ in equation (12). When

δ = 0, the covariate-specific treatment effects are constant: τ(x) = β for all x. Thus under this

restriction the average treatment effect (ATE) and the average effect of treatment on the treated

(TOT) both equal β in the population and in the sample.25 When δ 6= 0, the covariate-specific

treatment effect, given by τ(x) = β + δm(p(x)), depends on the covariate and ATE and TOT may

differ.26 Heteroscedasticity is controlled by the parameter ψ in equation (13). When ψ = 0, we

obtain homoscedasticity. When ψ 6= 0, the residual variance depends on treatment as well as on

the propensity score. The function m(·) and the parameter γ manipulate the non-linearity of the

25For a discussion of the distinction between sample and population estimands, see Imbens (2004), for example.
26For a discussion of other estimands of interest, see Heckman and Vytlacil (2005), for example.
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outcome equation that is common to both treated and non-treated observations.27

We assess the relative performance of the estimators described in Section II in a total of twenty-

four different contexts. These different contexts are characterized by four different settings, three

different designs, and two different regression functions. We now describe these contexts in greater

detail.

The four settings we consider correspond to four different combinations of the parameters in

equation (12): β, γ, δ, and ψ. In each of these four settings, we set β = 1 and γ = 1. However,

we vary the values of the parameters δ and ψ, leading to four combinations of homogeneous and

heterogeneous treatment effects and homoscedastic and heteroscedastic error terms. The specific

configurations of parameters used in these four settings are summarized below:

Setting β γ δ ψ Description

I 1 1 0 0 homogeneous treatment, homoscedastic

II 1 1 1 0 heterogeneous treatment, homoscedastic

III 1 1 0 2 homogeneous treatment, heteroscedastic

IV 1 1 1 2 heterogeneous treatment, heteroscedastic

The two regression functions we consider, m(·), correspond to the functional forms used by ?.

The first curve considered is a simple linear function. The second curve is nonlinear and rises from

around 0.7 at q = 0 to 0.8 near q = 0.4, where the curve attains its peak, before declining to 0.2 at

q = 1. The precise equations used for these two regression functions are summarized below:

Curve Formula Description

1 m1(q) = 0.15 + 0.7q Linear

2 m2(q) = 0.2 +
√

1− q − 0.6(0.9− q)2 Nonlinear

Finally, the three designs we consider correspond to different combinations of the parameters in

equation (10): η and κ. These parameters control degrees of overlap between the densities of the

propensity score of treated and control observations as well as different ratios of control to treated

units. The specific configurations of parameter values for η and κ are different in Sections IV and

VI and are enumerated in those sections.

IV Results: Benchmark Case

We begin by focusing on the case of Xi distributed standard normal and ui distributed standard

Cauchy.28 As we discuss in more detail below, an initial focus on this DGP allows us to sidestep some

27Note that we only consider DGPs in which γ 6= 0. When γ = 0, all estimators of the TOT for which the weighting
function w(j) adds up to 1 can analytically be shown to be finite sample unbiased. When γ 6= 0, no easy analytical
finite sample results are available, and simulation evidence is much more relevant.

28In principle, we could have let ui follow a normal distribution with parameters selected in a manner that they
allow for good overlap. In such a case, because in the normal case the parameters that manipulate overlap also
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important technical issues that arise with poor overlap in propensity score distributions between

treatment and control units. We defer discussion of these complications until Sections V and VI.

The specific configurations of the parameters η and κ used in these three designs are summarized

below:

Design η κ Treated-to-Control Ratio

A 0 0.8 1:1

B 0.8 1 2:1

C -0.8 1 1:2

An important feature of these DGPs is the behavior of the conditional density functions of the

propensity score, p(Xi), conditional on treatment. Figure 1A displays the conditional density of the

propensity score given treatment status. This figure features prominently in our discussion, and we

henceforth refer to such a figure as an overlap plot.

The figures point to several important features of our benchmark DGPs. First, for all three

designs considered, the strict overlap assumption is satisfied. As noted by Khan and Tamer (2007),

this is a sufficient assumption for
√
n-consistency of semiparametric treatment effects estimators.

Second, the ratio of the treatment density height to that for control gives the treatment-to-control

sample size ratio. From this we infer that it is more challenging to estimate the TOT in design C

than in designs A or B. Third, design A is symmetric and estimation of the ATE is no more difficult

than estimation of the TOT.

We turn next to an analysis of the results of the simulation. In Section IV.A we assume that the

propensity score model is correctly specified, and estimation proceeds using a maximum likelihood

Cauchy binary choice model that includes Xi as the sole covariate. In Section IV.B we study the

impact of misspecification of the propensity score model on performance.

In both sections IV.A and IV.B, and throughout the paper, we report separate estimates of

the bias and the variance of the estimators. In addition, for each estimator we test the hypothesis

that the bias is equal to zero, and we test the hypothesis that the variance is equal to the SEB.

These choices reflect our view that it is difficult to bound the bias a researcher would face, across

the possible DGPs the researcher might confront, unless the estimator is unbiased or nearly so.

Bounding the bias is desirable under an objective of minimizing the worst case scenario performance

of the estimator, across possible DGPs.

change the ratio of treated to control observations in the designs, we would not be able to explore designs as the
ones we can study when ui is distributed Cauchy.
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A Correct Parametric Specification of Treatment Assignment

Table 1 examines the performance of our 14 estimators in the Normal-Cauchy model for n = 100

and n = 500. For ease of exposition, we do not show estimates of the bias and variance for all

twenty-four contexts.29 Instead, we summarize these estimates by presenting the simulated root

mean square bias (RMSB) and average variance, both overall across the twenty-four contexts and

separately for the settings described in Section III.30 There are 14 columns, one for each estimator

under consideration.

Estimates of the RMSB are presented in the first and second panels of Table 1 for n = 100 and

n = 500, respectively. As an aid to summarizing the results, we additionally perform F-tests of

the null hypothesis that the bias is zero jointly across the twenty-four contexts and jointly across

the designs and curves in any given setting.31 The value of the F-statistic for the joint test across

twenty-four contexts is reported below the setting-specific RMSB estimates, and p-values for these

F-tests are reported in brackets.32 The values of the F-statistics for the setting-specific tests are

suppressed in the interest of space. For these tests, we place an asterisk next to the RMSB when

the hypothesis is rejected at the 1% significance level.

Average variances are presented in the third and fourth panels of Table 1 for n = 100 and

n = 500, respectively. We provide a reference point for these variances using the SEB.33 Below the

average variances we report the percentage difference between the estimated variance and the SEB

on average across all twenty-four contexts. We also perform a F-test of the equality of the variance

estimates and the SEB, jointly across all twenty-four contexts and separately for each setting.34 The

F-statistic for the joint test across all twenty-four contexts is presented below the average percent

discrepancy between the variances and the SEBs. For the setting-specific test, we suppress the value

29As described above, a context here means a bundle of setting, design, and curve. We consider four settings, three
designs and two curves.

30In the main text, we focus on TOT and report summary tables. A series of appendix tables present summary
tables for ATE. Detailed tables for both TOT and ATE, as well as Stata data sets containing all of the replication
results, are available at http://www.econ.berkeley.edu/∼jmccrary.

31Practically, these tests are implemented as Wald tests using a feasible generalized least squares model for the
240,000 replications less their (context-specific) target parameters. To keep the power of these tests constant across
sample sizes, we keep nR constant at one million, where R is the number of replications. This implies 10,000
replications for n = 100 and 2,000 replications for n = 500. This also spares significant computational expense.

32Logical equivalence of null hypotheses implies that these F-tests can be viewed as (i) testing that all twenty-four
biases are zero, (ii) testing that all four setting-specific RMSB are zero, or (iii) testing that the overall RMSB is zero.

33Table A6 presents the SEB for each of the twenty-four contexts in question and contrasts this semiparametric
bound with the parametric Cramér-Rao bound. Details of these computations are provided in Appendix II. Because
the overlap is generally good in the Normal-Cauchy model, the SEB is only 8% higher than the Cramér-Rao bound
on average across contexts and never more than 28% higher. Note that the variances reported in Table 1 for n = 100
are to be compared to 10×SEB (10×SEB = 1000× (SEB/100)) and for n = 500 are to be compared to 2×SEB.

34Practically, these tests are implemented as Wald tests using a generalized least squares model for the twenty-
four estimated variances less their (context-specific) SEB. The variance of the variance can be approximated quite
accurately under an auxiliary assumption that the estimates of the TOT are distributed normally. In that case, the
variance of the variance is approximately 2V̂ 2/(R− 1), where V̂ is the sample variance itself and R is the number of
replications. See Wishart (1928) and Muirhead (2005, Chapter 3).
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of the statistic in the interest of space. For these tests, we place an asterisk next to the average

variance when the hypothesis is rejected at the 1% significance level.

We turn now to a discussion of the results, beginning with the evidence on bias for n = 100.

The results suggest several important conclusions. First, the pair matching, reweighting, double

robust, and control function estimators are all approximately unbiased. Of these, IPW1 and IPW2

are probably the least biased, performing even better than pair matching. Double robust seems

to acquire slightly greater bias in settings with treatment effect heterogeneity, whereas the other

unbiased estimators acquire slightly less. The F-statistics reject the null of zero bias at the 5% level

of significance for all estimators except IPW1, IPW2, and control function. Second, all matching

estimators that rely upon tuning parameters are noticeably biased. We suspect that this is due to

the difficulty of accurate estimation of nonparametric tuning parameters.35 Of these estimators,

ridge matching performs best, particularly when the Epanechnikov kernel is used.

For n = 500, pair matching, reweighting, double robust and control function remain approxi-

mately unbiased. In terms of bias, these estimators perform remarkably similarly for this sample

size. For the more complicated matching estimators, we see reduced bias in all cases as expected,

and local linear and ridge matching become competitive with reweighting with the larger sample

size. Although we can still reject the null of no bias, blocking becomes much less biased. The bias

of nearest-neighbor and kernel matching remains high in all settings.

When analyzing the performance within settings (see appendix tables) we observe similar pat-

terns of relative performance. First, reweighting, double robust, and control function estimators

are all unbiased regardless of the shape of the overlap plots and regardless of the ratio of treated to

control observations. Second, treatment effect heterogeneity, homoscedasticity, and nonlinearity of

the regression response function all affect relative performance negligibly.

We next discuss the variance results, presented in the bottom half of Table 1. These results reveal

several important findings. First, pair matching presents the largest variance of all the estimators

under consideration in all four settings, for both n = 100 and n = 500. Second, for n = 100, IPW2,

IPW3 and double robust have the lowest variance among unbiased estimators. Once n = 500, the

SEB is essentially attained by all of the unbiased estimators except for pair matching. Compared to

the SEB, IPW3 has on average a variance for n = 100 that is 3.5% in excess, IPW2 a variance that is

4% in excess, and double robust a variance that is 6.4% in excess. Once n = 500, these percentages

decline to 1%, 1.2%, and 1.4%, respectively.36 Third, among the biased estimators, those with

35? (1999) reports that the rates of convergence of cross validation is Op(n−1/10) which could explain the bad
performance of these estimators in small samples. See also, ? for further discussion on alternative cross-validation
methods.

36Although IPW1 does notably worse in terms of variance than IPW2, its performance is not as bad as has been
reported in other studies. For instance, ? reports that in a homoscedastic and homogeneous setting IPW1 has
an MSE that is between 150% and 1518% higher than that of pair-matching. The good performance of IPW1
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highest bias (nearest-neighbor and kernel matching) are the ones that present the lowest variance.

On average the variance of these estimators is below the SEB. This suggests that if these estimators

are asymptotically efficient, then they have a variance which approaches the SEB from below. This

conjecture is particularly plausible since local linear and ridge matching, the least biased among

the matching estimators, exhibit variance similar to that of the reweighting estimators.

In sum, our analysis indicates that when good overlap is present and misspecification is not

a concern, there is little reason to use an estimator other than IPW2 or perhaps IPW3. These

estimators are trivial to program, typically requiring 3 lines of computer code, appear to be subject

to minimal bias, and are minimal variance among approximately unbiased estimators.

B Incorrect Specification of Treatment Assignment

We investigate two different types of misspecification of the propensity score. First, we assume that

p (Xi) = F (η + κXi) when in fact the true DGP is p (Xi) = F (η+κX1i+X2i +X3i) whereXji follows

a standard normal distribution and F (·) is a Cauchy distribution. We call this a misspecification

in terms of covariates, Xi. This kind of misspecification occurs when the researcher fails to include

all confounding variables in the propensity score model. Second, we proceed with estimation as if

p (Xi) = F̃ (η + κXi) when in fact the true DGP is p (Xi) = F (η + κXi). In particular, we keep

F (·) as the distribution function for the standard Cauchy, but estimate the propensity score with

a probit—that is, we assume that p(Xi) = Φ(η + κXi). We call this a misspecification in terms of

the treatment equation residual, ui.

Results of these investigations are displayed in Table 2. The structure of this table is similar to

that of Table 1. Table 2 presents the RMSB and average variance for the 14 estimators in a sample

size of 100 under the two types of misspecifications. Covariate misspecification is treated in panels

1 and 3, and distributional misspecification is treated in panels 2 and 4.

The first panel shows that covariate misspecification leads every estimator to become biased in

every setting. This is expected and emphasizes the central role of the assumption of selection on

observed variables. Unless the unexplained variation in treatment status resembles experimental

variation, treatment effects estimators cannot be expected to produce meaningful estimates. These

estimators may continue to play a role as descriptive tools, however. The third panel shows that

the average variances are always below the SEB, typically by 20% to 30%. Thus, the exclusion

of relevant covariates from the propensity score model may lead to precise estimates of the wrong

parameter.

documented in Table 1 is due to the fact that, in the Normal-Cauchy model, there is a vanishingly small probability
of having an observation with a propensity score close to 1. It is propensity scores near 1 that generate extreme
weights, and it is extreme weights that lead to large variance of weighted means.
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We turn next to the results on distributional misspecification, where the DGP continues to have

a Cauchy residual on the treatment assignment equation, but the researcher uses a probit model

for treatment. The second panel presents results for the bias in this case. In this situation, only

pair matching and control function remain unbiased. Double robust is approximately unbiased

only in settings of homogeneous treatment effects. The reweighting estimators become biased but

are always less biased than the matching estimators. The fourth panel shows that none of the

estimators achieve the SEB. Unfortunately, the most robust estimators to misspecification of the

propensity score, that is pair matching and control function, are the ones with the largest variance.

Ridge matching and IPW3 are closest to the SEB, differing only by 4% to 6%.

V Problems with Propensity Scores Near Boundaries

The model given in equations (10) to (12) assumes selection on observed variables. As has been

noted by many authors, selection on observed variables is a strong assumption. It is plausible in

settings where treatment is randomized conditional on the function of the Xi given in (12). However,

it may not be plausible otherwise.37 We feel that practitioners appreciate the importance of this

assumption.

However, perhaps less widely appreciated than the importance of the selection on observed vari-

ables assumption is the importance of overlap assumptions. As emphasized by Khan and Tamer

(2007), the model outlined in equations (10) to (12)—while quite general and encompassing all

of the existing simulation evidence on performance of estimators for ATE and TOT under uncon-

foundedness of treatment—does not necessarily admit a
√
n-consistent semiparametric estimator

for ATE or TOT. In particular, the standard overlap assumption that 0 < p(Xi) < 1 is not sufficient

to guarantee
√
n-consistency, whereas the strict overlap assumption that ξ < p(Xi) < 1−ξ for some

ξ > 0 is. However, the strict overlap assumption can be violated by the model in equations (10) to

(12). For example, Khan and Tamer (2007) note that
√
n-consistency is violated in the special case

of Xi and ui both distributed standard normal, with η = 0 and κ = 1. The following proposition

sharpens this important result.

Proposition. Under the model specified in equations (10) to (12), with Xi and ui distributed stan-

dard normal, boundedness of the conditional variance of ei given Xi, and boundedness of the function

m(·),
√
n-consistent semiparametric estimators for ATE and TOT are available when −1 < κ < 1.

For |κ| ≥ 1, no
√
n-consistent semiparametric estimator can exist.

The proof of this result is tedious but elementary and uses bounds on the distribution function of

the standard normal distribution to bound the integral directly. We do not include it here, because

37We have emphasized the strength of this assumption by writing the selection on observed variables assumption
differently than is typical in the literature (see Section II; cf., Imbens (2004)).
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it is redundant with the integral bounds used to derive the SEB when it is finite. These are given

in Appendix II.38

Intuitively, when κ grows is magnitude an increasing mass of observations have propensity scores

near 0 and 1, leading to fewer and fewer comparable observations. This leads to an effective sample

size that is smaller than n, and the discrepancy between the effective sample size and n grows

smoothly with κ. This is important, because it implies potentially poor finite sample properties

of semiparametric estimators, in contexts where κ is near 1. This is confirmed by the simulation

results presented in Section VI, below.

Assuming both Xi and ui are distributed continuous, the extent to which the propensity score

fluctuates near 0 and 1 is given by the functional form of the density of the propensity score

fp(Xi)(q) =
1

|κ|
g
((
F−1(q)− η

) /
κ
)/

f(F−1(q)), (15)

where F (·) and f(·) are the distribution and density functions, respectively, for ui, and g(·) is the

density function for Xi.
39 For q near one (zero), F−1(q) is of extremely large magnitude and positive

(negative) sign. Thus, the functional form given makes it clear that when η and κ take on modest

values, the density of p(Xi) is expected to be zero at one (zero) when the positive (negative) tail

of f(·), the density for the residual, is fatter than that of g(·), the density for the covariate. When

the tails of the density for the residual are too thin relative to those of the covariate, the density of

p(Xi) near zero can take on positive values, in which case the SEB is guaranteed to be infinite and
√
n-consistency is lost.

This is a useful insight, because the behavior of the propensity score density near the boundary

can be inferred from data. In fact, many economists already analyze density estimates for the

estimated propensity score, separately by treatment status (see, for example, Figure 1 of Black

and Smith (2004)). As discussed above, we refer to this graphical display as an overlap plot. The

unconditional density function is simply a weighted average of the two densities presented in an

overlap plot. Thus, the behavior of the unconditional density near the boundaries can be informally

38Formally, the results of the Proposition follow because semiparametric estimators with
√
n-consistency are only

available in situations in which the SEB is finite. The functional form of these bounds, given in Section II.E, involves
terms akin to the expectation of the inverse of p(Xi) (for ATE) and the expectation of the inverse of 1− p(Xi) (for
both ATE and TOT). For κ = 1, the density of the propensity scores is uniform on [0, 1], and for larger values of
κ, the density of the propensity scores becomes an upward-facing parabola. The fact that the density has positive
height at 0 and 1 implies immediately that the expectations of the inverse of p(Xi) and of 1−p(Xi) are infinite. The
only difficult aspect of the proof of the Proposition is to show that these expectations are in fact finite whenever the
height of the density at 0 and 1 is zero.

39The equation in the display also holds when Xi is a vector. In that case, the density of a linear combination of the
vector Xi plays the role of the scalar Xi considered here. Suppose the linear combination has distribution function
G(·) and density function g(·). Then the density for the propensity score is as is given in the display, with κ = 1. Note
as well that the density of the propensity score among the treated and control is given by fp(Xi)|Ti=1(q) = q

pfp(Xi)(q)
and fp(Xi)|Ti=0(q) = 1−q

p fp(Xi)(q), respectively.
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assessed using a graphical analysis that is already standard in the empirical literature.40 When the

overlap plot shows no mass near the corners, semiparametric estimators enjoy
√
n-consistency.

When the overlap plot shows strictly positive height of the density functions at 0 (for ATE) or 1

(for ATE or TOT), no
√
n-consistent semiparametric estimator exists. In the intermediate case,

where the overlap plot shows some mass near the corners, but where the height of the density at 0

or 1 is nonetheless zero,
√
n-consistent estimators may or may not be available.41

To appreciate the problems with applying standard asymptotics to the semiparametric esti-

mators studied here in situations with propensity scores near the boundaries, we turn now to a

sequence of DGPs indexed by κ and inspired by the Proposition. Let the DGP be given by equa-

tions (10) to (12), with Xi, ei, and ui each distributed mutually independent and standard normal,

with γ = δ = ψ = η = 0, with κ ranging from 0.25 to 1.75. This DGP has homogeneous treatment

effects, homoscedastic residuals of variance 1, and probability of treatment equal to 0.5.

For this DGP, γ = 0 and IWP2 for TOT is finite sample unbiased, but inefficient. The efficient

estimator is the coefficient on treatment in a regression of the outcome on a constant and the

treatment indicator. It is thus easy to show that the Cramér-Rao bound is 4, regardless of the value

of κ. When the SEB is close to the Cramér-Rao bound, there is little cost to using a semiparametric

estimator. When there is quite good overlap, such as κ = 0.25, the SEB is in fact scarcely larger

than 4 and there is little cost associated with avoiding parametric assumptions on the outcome

equation. However, as problems with overlap worsen, the discrepancy between the SEB and the

Cramér-Rao bound diverges. The cost of avoiding parametric assumptions on the outcome equation

thus becomes prohibitive as κ increases in magnitude.

To convey a sense of the way in which an infinite SEB would manifest itself in an actual data

set, Figure 2 shows the evolution of the overlap plot as κ increases. When κ = 1, the conditional

densities are straight lines akin to a supply-demand graph from an undergraduate textbook. For

κ < 1, the values of the conditional densities at the corners are zero. For κ > 1, the values of the

conditional densities at the corners are positive and grow in height as κ increases.

Applying standard asymptotics to this sequence of DGPs suggests that, for κ < 1, IPW2 and

pair matching estimates of the TOT have normalized large sample variances of

nVIPW2 =
1

p
+

1

p
E

[
p(Xi)

2

p(1− p(Xi))

]
> 4, (16)

nVPM = nVIPW2 +
1

2

(
1 +

1

p
E

[
p(Xi)

1− p(Xi)

])
> 4 +

3

2
. (17)

40Because the behavior of the density at the boundaries is the object of primary interest, it is best to avoid standard
kernel density routines in favor of histograms or local linear density estimation (see McCrary (2008) for references).

41As the proposition above clarifies,
√
n-consistency is available, despite mass near the corners, when the covariate

and treatment equation residuals are distributed standard normal. It is not yet known whether
√
n-consistency is

always attainable when there is mass near the corners, but zero height to the density function of p(Xi) in the corners.
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The variance expressions are close to 4 and 4+3/2 for moderate values of κ but are much larger

for large values of κ.42 Indeed, the Proposition implies that both nVIPW2 and nVPM diverge as κ

approaches 1.43

We next examine the accuracy of these large sample predictions by estimating the variance of

IPW2 and pair matching for each value of κ.44 Figure 3 presents the estimated standard deviation of

these estimators as a function of κ and show that the quality of the large sample predictions depends

powerfully on the value of κ.45 For example, for κ below 0.7, the large sample predicted variances

are generally accurate, particularly for IPW2. However, for κ = 0.9, the large sample predicted

variances are markedly above the empirical variances for both estimators and the discrepancy grows

rapidly as κ approaches 1, with the large sample variances diverging despite modest empirical

variances. Roughly speaking, viewed as a function of κ, the standard deviations of IPW2 and

pair matching are both linear to the right of κ = 0.7, with different slopes. The pattern of the

variances is consistent with what would be expected if the variance of pair matching and IPW2

were proportional to the inverse of nc1+c2κ, with possibly different coefficients c1 and c2 for the two

estimators. Under this functional form restriction on the variances, it is possible to estimate c1

and c2 using regression. Define Ygκ as ln(V̂100

/
V̂500)

/
ln(5) for g = 1 and as ln(V̂500

/
V̂1000)

/
ln(2) for

g = 2, where V̂n is the estimated variance for sample size n. Then note that under the functional

form restriction on the variances, Ygκ ≈ c1 +c2κ. Thus, a simple method for estimating c1 and c2 is a

regression of Ygκ on a constant and κ.46 For both IPW2 and pair matching, we have 26 observations

on Ygκ, 13 for g = 1 and 13 for g = 2. For IPW2, the regression described has an R-squared of 0.93

and constant and slope coefficients (standard errors) of 1.19 (0.02) and -0.39 (0.02), respectively.

For pair matching, the R-squared is 0.94 and the constant and slope coefficients (standard errors)

are 1.15 (0.02) and -0.33 (0.02), respectively. We report these results not because we believe that

the scaling on the variance is of the form nc1+c2κ, but to emphasize our sense that the correct scaling

is a smooth function of κ.47

These results create a strong impression that the asymptotic sequences used in the large sample

literature may be accurate in settings of good overlap, but are likely inaccurate in settings of poor

42The inequalities follow from Jensen’s inequality and from the fact that p = 0.5 for these DGPs.
43The percent increase of nVPM over nVIPW2 is between 37.5 percent (when κ = 0) and 25 percent (when κ

approaches 1) and declines monotonically in the magnitude of κ.
44We use 2,000 replications.
45Interestingly, large sample predictions appear much more accurate for IPW2 than for pair matching.
46Weights improve power since the outcome is more variable for g = 2 than for g = 1. In particular, the

delta method and Wishart approximations suggest that the standard deviation of the outcome is approximately√
4/2000

/
ln(5) for g = 1 and

√
4/2000

/
ln(2) for g = 2.

47However, it is interesting to note that these regressions can be viewed as minimum chi-square estimates (Ruud
2000). This approach allows for a statistical test of the functional form restriction that the variances are proportional
to the inverse of nc1+c2κ. The test takes the form of the minimized quadratic form, or in this case the (weighted)
sum of squared residuals. The test statistic is distributed chi-square with 24 degrees of freedom. For IPW2, this test
statistic is 28.4 and for pair matching it is 20.5 (95 percent critical value 36.4).
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overlap. The performance of these two estimators does not seem to degrade discontinuously when

κ exceeds one, but rather seems to degrade smoothly as κ approaches one.

Failure to satisfy the strict overlap assumption can also lead to bias in semiparametric estimators.

The sign and magnitude of the bias will be difficult to infer in empirical work. Consider again the

model in equations (10) to (12), with η = 0, β = 1, γ = 0, and m(q) = q. In this DGP, when δ = 0,

IPW2 for ATE is finite sample unbiased regardless of the value of κ. When δ = 1, the treatment

effect is positively correlated with the propensity score and IPW2 for ATE may be biased. Similarly,

when δ = −1, the treatment effect is negatively correlated with the propensity score and IPW2 for

ATE may be biased.

Figure 4 shows the bias of IPW2 for ATE as a function of κ for δ = 0, δ = 1, and δ = −1. The

figure confirms that when δ = 0, large values of κ do not compromise the unbiasedness of IPW2.

However, when δ 6= 0, large values of κ lead to bias. Importantly, when overlap is good, IPW2 is

unbiased regardless of the value of δ.

VI Results: Boundary Problems

In order to focus attention on how the estimators perform when the strict overlap condition is

close to being violated, we turn now to an analysis of a DGP that is a minor modification of that

described in Section IV, above. Instead of generating ui as independent draws from the standard

Cauchy distribution, we generate ui as independent draws from the standard normal distribution.

We manipulate the parameters η and κ in the treatment equation (10) to mimic three designs from

the influential study of ?. These parameters are summarized below:

Design η κ Treated-to-Control Ratio

A 0 0.95 1:1

B 0.3 -0.8 3:2

C -0.3 0.8 2:3

Figure 1B shows the overlap plot implied by these designs. Each of these designs is consistent

with standard overlap, but none are consistent with strict overlap. This figure shows that having

many control observations per treated observations does not imply the validity of the strict overlap

condition. For example, design A is closer to violating the strict overlap assumption than design C

is, even though the ratio of treated to control observation is higher in the former than in the latter.

A Simulation Results with Boundary Problems

In Table 3 we explore estimator performance in DGPs that are close to violating the strict overlap

condition. The structure of the table is identical to that of Table 1, but the DGPs correspond to

the Normal-Normal model, rather than the Normal-Cauchy model.
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The results in the table support several conclusions. First, when n = 100, nearly all estimators

are biased in all settings. The exceptions are the control function and double robust estimators

in homogeneous treatment effect settings. These two estimators impose parametric assumptions

on the outcome equation. This allows for extrapolation from the region of common support to

the region over which there are treated observations but no controls. Second, although reweighting

estimators are biased with n = 100, they become unbiased when n = 500. This raises the possibility

that, for a good finite sample performance, a larger sample size is required for DGPs with poor

overlap that is nonetheless technically sufficient to guarantee
√
n-consistency. Third, aside from

pair matching, the magnitude of the bias of matching estimators is between two and five times that

of the reweighting estimators, and they remain biased even for n = 500. Pair matching is biased

for n = 100 and nearly unbiased for n = 500.48 The third and fourth panel show that the variance

of all estimators is much higher than in the case in which we satisfy the strict overlap assumption,

even though none of the designs imply an infinite SEB. For all estimators we reject the null that

the variance equals the SEB in every setting. Contrary to the case of strict overlap analyzed in the

preceding section, this holds true for both n = 100 and n = 500. The variance of all the estimators

is on average below the SEB.

In sum, in settings of poor overlap, semiparametric estimators of average treatment effects do

not perform well for n = 100. Once n = 500, the pair matching, reweighting, double robust, and

control function estimators show acceptable bias, but only IPW1 has bias small enough that we

fail to reject the null of zero bias. The variance of semiparametric estimators is hard to assess

in settings of poor overlap, since neither the SEB nor other large sample approximations form

acceptable benchmarks. However, considering both bias and variance and performance for n = 100

and n = 500, the best estimators in settings with poor overlap appear to be IPW2, IPW3, and

double robust.

B Trimming

In many empirical applications, researchers encounter a subset of observations whose propensity

scores do not have common support. Such a finding is expected when the strict overlap condition is

violated, although it can also occur in finite samples when strict overlap is satisfied in the population.

Confronted by lack of common support, many researchers resort to trimming rules. These sample

selection rules involve dropping individuals from the treatment group who have no counterparts in

48The sign of the bias of the TOT depends on the shape of the outcome equation. An outcome equation that
is increasing (decreasing) in the propensity score like curve 1 (curve 2) implies that the bias will be more positive
(negative) the closer we are to violating the strict overlap condition because we have too many treated observations
and too few controls at the right end of the distribution of the propensity score (see appendix). The bias is not
related to the overall ratio of treated per controls units in the sample. The bias of all the estimators tends to be of
the same order of magnitude in the three designs.
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the control group with similar propensity scores (for TOT).49 Trimming aims at ensuring validity of

the common support assumption in the subset of observations that are not trimmed. See Heckman,

Ichimura and Todd (1998a), Smith and Todd (2005), and Crump, Hotz, Imbens and Mitnik (2007a)

for discussion. There are several trimming methods that have been proposed in the literature. Little

is known about their effect on the performance of semiparametric estimators.

As noted by Heckman et al. (1998a), reweighting and matching at best correct for bias for

the subsample of individuals whose propensity scores have common support. For this reason,

trimming is only expected to work in situations of treatment effect homogeneity, simply because

the treatment effect can be estimated anywhere on the support of the propensity score. Dropping

observations will make the estimator more inefficient but the bias is expected to decrease because

we will be estimating the counterfactual mean only in regions in which both treated and control

units are available. However, if the treatment effect is heterogeneous, and more importantly, if the

heterogeneity occurs precisely in the part of the support for which we do not have both treated

and control observations, then trimming will not be a solution.50 In those type of situations the

researcher might need to redefine the estimand (see Crump et al. 2006) paying a cost in terms of

having a result with less external validity or resort to fully parametric models—which will typically

only be effective if the full parametric model is correctly specified.

We analyze the effectiveness of the four trimming rules reviewed in Crump et al. (2006):

1. Let DATE
i = 1(â < p̂(Xi) < b̂) and DTOT

i = 1(p̂(Xi) < b̂) setting b̂ to be the kth largest
propensity score in the control group and â to be the kth smallest propensity score in the
treatment group. Then we compute the estimators on the subsample for which DTOT

i = 1 (or
DATE
i = 1). This rule was proposed by Dehejia and Wahba (1999).

2. Heckman et al. (1996, 1998) and Heckman, Ichimura, Smith and Todd (1998) propose dis-
carding observations for which the conditional density of the propensity score is below some
threshold. Let D0i (c) = 1(f̂p̂(Xi)|Ti=0 < c) and D1i (c) = 1(f̂p̂(Xi)|Ti=1 < c ) where c is a tuning

parameter, and f̂p̂(Xi)|Ti=1 and f̂p̂(Xi)|Ti=0 are kernel density estimates (with Silverman’s rule
as a bandwidth selector). Then, following Smith and Todd (2005), fix a quantile q = 0.02

and consider the J observations with positive densities f̂p̂(Xi)|Ti=1 and f̂p̂(Xi)|Ti=0. Rank all

the values of f̂p̂(Xi)|Ti=1 and f̂p̂(Xi)|Ti=0 and drop units with a density less than or equal to cq,

where cq is the largest real number such that 1
2J

∑J
i=1 [D0i (cq) +D1i (cq)] ≤ q for the ATE.

For the TOT we can proceed in a similar fashion but only using f̂p̂(Xi)|Ti=1.

3. Ho, Imai, King and Stuart (2007) define the common support region as the convex hull of the
propensity scores used by pair matching.

49Trimming in the case of estimation of the ATE is similar, but individuals from both the treatment and the
control group are deleted.

50An alternative to trimming is to compute bounds for the treatment effects. This possibility was advocated by ?
(2001) in the context of matching estimators of treatment effects.
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4. Finally, Crump et al. (2007a) propose discarding all units with an estimated propensity score
outside the interval [0.1, 0.9] for the ATE and [0, 0.9] for the TOT.

In Table 4 we study whether, in a DGP that is close to violating the strict overlap assumption,

trimming succeeds in reducing the bias. As expected, the double robust and control function esti-

mators stay unbiased in homogeneous settings, but trimming increases the bias of those estimators

in heterogeneous settings. Trimming rules 1 and 4 seem to lead to unbiasedness of reweighting and

pair matching in settings with a homogeneous treatment effect. These rules also reduce the bias of

all the matching estimators. Trimming rule 3 only works with pair matching and to a lesser extent

with ridge matching. Trimming rule 2 does not seem to work with n = 100. This may not be

surprising since this rule requires estimating the conditional density of the propensity score with

very few observations.

In Table 5 we present the effect of trimming on the variance of the estimators. Rules 1 and 4

reduce the variance of IPW estimators and of local linear and ridge matching. Surprisingly, the

variance of the other matching estimators seem to be basically unaffected by any of the trimming

rules.

VII Reconciliation with Previous Literature

Previous literature has analyzed the finite sample properties of semiparametric estimators of treat-

ment effects in situations with homogeneous treatment effects and homoscedastic outcome error

terms. ? compares the finite sample performance of several matching estimators based on the

propensity score and the IPW1 estimator, in simulation settings that highlight the interactions be-

tween the non-linearities of the outcome equation and different degrees of overlapping density mass

between treated and control observations. Zhao (2004) contrasts the performance of propensity

score matching and covariate matching methods using a simulation study that varies the degree of

selection on observed variables and the correlation between covariates, the outcome and the treat-

ment indicator. Lunceford and Davidian (2004) compare reweighting, double robust and blocking

estimators via a simulation analysis that assesses the effect of different degrees of correlation be-

tween regressors in the outcome and treatment equation, emphasizing situations in which there is

misspecification of various types. Finally, Freedman and Berk (2008) study the costs and benefits

of using a semiparametric estimator such as double robust rather than fully parametric estimators.

Some of our conclusions are at odds with findings in this previous literature.

? is the most similar to the present work in terms of the estimators considered and the simulation

studies performed. The study reaches the conclusion that ridge matching is often the estimator with

smallest MSE. As we showed in sections IV and VI, ridge matching does relatively well, especially
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among the matching estimators, in terms of variance but was only unbiased in a situation with good

overlap and for a moderate sample size of 500 observations. A surprising conclusion of ? is that

reweighting estimators perform very poorly, usually presenting a larger MSE than pair matching.

Even more surprising is that the relative MSE of reweighting does not decline with the sample size

in ?’s DGPs.

Several differences between ? and this study account for the discrepancies in the conclusions.

First, ? only considers the performance of IPW1. As noted above, in many DGPs IPW1 is

substantially more variable than IPW2 and IPW3. Second, ? computes all estimators using the

true propensity score instead of the estimated propensity score. As noted by Hirano et al. (2003),

reweighting performs better when the estimated propensity score is used. Third, ?’s study evaluates

estimators by how well they perform in estimation of a non–standard estimand: the counterfactual

mean outcome for the control group, as opposed to the TOT or the ATE, which would be more

conventional estimands of interest.51 However, the most important difference between our study

and ? is that ?’s DGPs violate the strict overlap condition and are quite close to exhibiting an

infinite SEB. As we have shown, in such a setting nearly all semiparametric estimators acquire

difficulties with bias, and MSE may not be the best metric for performance. In particular, our own

simulation evidence suggests that in situations with poor overlap, the most biased estimators are

also the least variable. For example, in the Normal-Normal model for both n = 100 and n = 500

and for all four settings, kth nearest-neighbor matching exhibits both the worst bias and the best

variance of any estimator (Table 3).

Figure 5 presents overlap plots for the finite sample papers reviewed above. The figure is to

be compared to Figure 2, which shows the evolution of the conditional densities of the propensity

score as we increase κ in our Normal-Normal model. The design of ? displayed in Figure 5 is quite

similar to that of the Normal-Normal model when η = 0 and κ = 0.9. As noted above, although

the SEB is technically speaking finite, this is a situation in which strict overlap is violated and

asymptotic approximations may be poor. This is confirmed by our own simulation results. For the

Normal-Normal model, IPW1 and pair matching exhibit similar bias, but IPW1 has notably higher

variance. In a MSE metric, pair matching is superior to IPW1 for these DGPs, for both n = 100

and n = 500.

Failure of strict overlap is also characteristic of the DGPs studied by Zhao. Figure 5 displays the

conditional densities of the propensity score for the first of the DGPs he uses in his simulation study.

Inspection of the figure indicates an extraordinarily serious failure of strict overlap. In this DGP,

it is further true that the SEB is infinite: Zhao’s DGP is the same as our Normal-Normal model

(discussed in Section VI) with κ = 2.8. That the SEB is infinite thus follows from the Proposition

of Section V.

51This tends to amplify MSE differences, since MSE(θ̂) = MSE(Ê[Yi(0)|Ti = 1]) + V (Y 1).
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We turn next to the analyses of Lunceford and Davidian (2004) and Freedman and Berk (2008).

Lunceford and Davidian focus on the performance of reweighting and double robust estimators

for ATE. One of their principal conclusions is that a double robust estimator performs well in a

broader class of DGPs than IPW estimators. Freedman and Berk also consider a variant of the

double robust estimator, but focus on the comparison with parametric OLS models, which are of

course best in the sense of being minimum variance among unbiased estimators. Perhaps influenced

by this hopeful benchmark, Freedman and Berk express reservations about the utility of reweighting

estimators of average treatment effects.

Figure 5 displays a representative overlap plot for the DGPs used by Lunceford and Davidian

and Freedman and Berk. The figure reveals that the DGPs studied by Lunceford and Davidian and

Freedman and Berk are similar to those of ? and Zhao in that they violate strict overlap. Indeed,

the displayed DGP of Freedman and Berk is further associated with an infinite SEB. We disagree

with Freedman and Berk’s characterization of this DGP as “favorable to weighting”. In DGPs of

the type studied by Freedman and Berk, none of the semiparametric estimators studied here will

be effective. We find uncontroversial the overarching point of Freedman and Berk that (correctly

specified) parametric models outperform semiparametric estimators.

One further aspect deserves mention in understanding the findings here and in Lunceford and

Davidian (2004) and Freedman and Berk (2008). To fix ideas, consider DGPs where the outcome

equation is linear in the propensity score. In this case, the critique of weighting in Freedman and

Berk (2008) corresponds closely to what Deaton (1997) has referred to as “the econometric critique

of weighting.” Deaton is interested in OLS estimation of a parametric relationship between the

outcome and a set of covariates, where there are departures from pure random sampling, such as

cluster sampling. Specifically he considers the case where Yi = Xiβ + εi under the usual ideal

conditions that deliver consistency of OLS. In the case of stratified or cluster sampling, simple

OLS regression continues to have desirable properties. Weighted OLS regression, where the weights

reflect, say, the probability of being included in the sample continue to yield consistent estimates

of β, but are merely less efficient than the unweighted estimator, a conclusion consistent with the

conclusion in Freedman and Berk (2008) that “weighting is likely to increase random error in the

estimates.”

Now consider the case where there is some limited heterogeneity in β. In particular, suppose

that Yis = Xisβs + εis, where the effect of the covariate on the outcome is no longer fixed but differs

by stratum, s. OLS will no longer be consistent for the stratum weighted average of βs regardless

of whether or not weights are used in the regression.52Given his context, Deaton suggests that the

weighted regression might be used in a formal or informal specification test – the weighted and

unweighted regression estimates should be “close” under the null that β is the same for each strata.

52A consistent estimator of the strata weighted coefficient can be obtained by performing separate regressions for
each stratum and then appropriately weighting the estimated coefficients.

29



These points can be seen most clearly in the following simple example. Let εi, νi, and ui be

standard normal. Define Xi = κ× ui and consider the following DGP, for a sample size N = 100,

which is a simplified version of the one we have studied above (equations (10) to (12)):

T ?i = Xi + νi; Ti = 1 (T ?i > 0) ; Yi = Ti +Xi + εi.

As before different values of 0 < κ < 1 correspond to cases of strict overlap. In this context,

three estimators considered by Lunceford and Davidian (2004) and Freedman and Berk (2008) are

OLS (of the correctly) specified model, double robust, and IPW2 where: (i) OLS is just the simple

unweighted regression of the outcome on T and X; (ii) double robust is a weighted regression of the

outcome on T and X where 1/p̂ and 1/(1−p̂) are the weights for treated and untreated observations,

respectively and p̂ is the predicted probability of treatment from a simple probit of T on X;53(iii)

and IPW2 is identical to double robust except that it requires a different weighted regression, using

the same outcome variable and weights but dropping the covariate.

When strict overlap is satisfied and the treatment effect is homogenous, all three estimators are

consistent for ATE and in each case the variance of the estimator depends on the value of κ. Figure

6 displays the standard deviation of the three estimators for various values of κ that resulted from

a simulation of the above DGP with 20,000 replications. Consistent with the findings of Lunceford

and Davidian (2004) and Freedman and Berk (2008), the double robust estimator outperforms

IPW2 and correctly specified OLS outperforms both. We take away a couple of key points from

this demonstration:

1. The extent of the superior performance of double robust relative to IPW depends crucially

on κ. Higher values of κ are associated with worse performance of all estimators, with the

degradation in IPW2 being the most severe.

2. Consistent with the analysis in Freedman and Berk (2008) and Lunceford and Davidian (2004),

however, it is also the case that weighting regressions merely “adds noise” to the estimate when

the parametric model is correctly specified.

3. It is important to stress that these results refer only to the variance of the estimator and only

when strict overlap is satisfied. All three estimators are consistent. For values of κ > 1 the

IPW2 estimator is not properly identified. When κ = 2 for example, the mean value of the

IPW estimates in 20,000 simulations was fully 100% large than its true value.

53Previously we implemented the double robust estimator by including the propensity score instead of the covariate
X. We do it this way here for ease of exposition.
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VIII Conclusion

In this paper, we assess the finite sample properties of semiparametric estimators of treatment

effects using simulated cross-sectional data sets of size 100 and 500. The estimators we consider

are semiparametric in the sense that only the treatment assignment process is parametrically mod-

eled. This perspective on estimation encompasses several popular approaches including reweighting,

double robust, control function, and matching, but rules out maximum likelihood estimation and

estimators based on parametric assumptions on the relationship between the outcome of interest

and predicting variables. The semiparametric estimators we consider are popular in the empirical

literature.

The simulation evidence suggests that when there is good overlap in the distribution of propen-

sity scores for treatment and control units, reweighting estimators are preferred on bias grounds

and attain the semiparametric efficiency bound, even for samples of size 100. The double robust

estimator can be thought of as regression adjusted reweighting and performs slightly worse than

reweighting when there is good overlap, but slightly better when there is poor overlap. Control

function estimators perform well only for samples of size 500. Matching estimators perform worse

than reweighting if preferences over bias and variance are lexicographic and if good performance for

n = 100 is required. If there is enough data, then local linear or ridge matching may be competitive

with reweighting. The difficulty of the more complicated matching estimators is potentially related

to the difficulty of accurate finite sample selection of tuning parameters.54

When overlap in the distribution of propensity scores for treatment and control units is close

to failing, the semiparametric estimators studied here do not perform well. This difficulty can be

inferred from the available large sample results in the literature (Hirano et al. 2003, Abadie and

Imbens 2006, Khan and Tamer 2007). We also show that the standard asymptotic arguments used

in the large sample literature provide poor approximations to finite sample performance in cases of

near failure of overlap. However, our qualitative conclusion is the same as that reached by Khan

and Tamer (2007), who note that the semiparametric estimators considered here are on a sound

footing only when there is strict overlap in the distribution of propensity scores (see Section II).

In empirical applications, economists confronting problems with overlap often resort to trimming

schemes, in which some of the data are discarded after estimation of the propensity score. We

simulate the performance of the estimators studied in conjunction with four trimming rules discussed

54If preferences over bias and variance are not lexicographic, then some of the biased matching estimators may be
preferred to reweighting. We caution, however, that the data generating processes we consider may not represent
those facing the economist in empirical applications. In empirical applications, the bias could be of lesser, or greater,
magnitude than suggested here, in which case the economist’s preference ranking over estimators could be different
than that suggested by a literal interpretation of the simulation evidence. Our own preferences over bias and variance
lean towards lexicographic because we have a taste for estimators that minimize the maximum risk over possible
data generating processes.
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in the literature. None of these procedures yield good performance unless there is homogeneity in

treatment effects along the dimension of the propensity score.

What is then to be done in empirical work in which problems with overlap are suspected? First,

to assess the quality of overlap, we recommend a careful examination of the overlap plot, possi-

bly focused on histograms and possibly involving smoothing using local linear density estimation.

Second, if overlap indeed appears to be a problem, we recommend analysis of subsamples based

on covariates to determine if there are subsamples with good overlap. For example, in some set-

tings, it could occur that problems with overlap stem from one particular subpopulation that is

not of particular interest. Analyzing subsamples based on covariates is likely to work better than

analyzing subsamples based on quantiles of an estimated propensity score. Third, if there is no

obvious subpopulation displaying good overlap, we recommend that the economist consider para-

metric assumptions on the outcome equation. Semiparametric estimators work well in this context

when there is good overlap. When overlap is poor, however, these estimators are highly variable,

biased, and subject to nonstandard asymptotics. In settings with poor overlap, the motivation for

semiparametric estimation is poor and the most effective methods are likely parametric approaches

such as those commonly employed in the older Oaxaca (1973) and Blinder (1973) (1973) literature.
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Appendix I. IPW3 for TOT

Lunceford and Davidian (2004) derive the IPW3 estimator for the case of ATE. Here we show the

derivation of an IPW3 estimator for the TOT. For simplicity of notation in the displays, define

π = p̂ and p̂i = p̂(Xi).

θ̂IPW1 =
1

n

n∑
i=1

Ti
π
Yi −

1

n

n∑
i=1

p̂i(1− Ti)
1− p̂i

1

π
Yi ≡ Y (1)− ν̂0,ip̂w1,

θ̂IPW2 =
n∑
i=1

Ti
π
Yi −

(
n∑
i=1

p̂i(1− Ti)
1− p̂i

1

π

)−1 n∑
i=1

p̂i(1− Ti)
1− p̂i

1

π
Yi ≡ Y (1)− ν̂0,ip̂w2.

We can combine these two estimators by optimally weighting ν̂0,ip̂w1 and ν̂0,ip̂w2 as follows:

Step 1: Nest ν̂0,IPW1 and ν̂0,IPW2 in one moment condition and solve for ν̂0(η0)

Step 2: Find η∗0 that minimizes the large sample variance of ν̂0(η0)

Step 3: Find ν̂0IPW3 = θ(η∗0).

Step 1: First Moment Condition

The moment condition that yields ν̂0,IPW2 as a solution is

n∑
i=1

1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i
= 0.

In order to nest ν̂0,IPW1, introduce a fake parameter η0

n∑
i=1

1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i
− η0Bi = 0,

and then find Bi such that when η0 = ν0 the solution of the moment condition is ν̂0,ip̂w1. That is

n∑
i=1

1

π

p̂i(1− Ti)Yi
1− p̂i︸ ︷︷ ︸

n ν̂0,ip̂w1

−
n∑
i=1

[
1

π

p̂i(1− Ti)
1− p̂i

ν0 + ν0Bi

]
= 0.

So we want

n∑
i=1

[
1

π

p̂i(1− Ti)
1− p̂i

ν0 + ν0Bi

]
= n ν0
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or

1

π

p̂i(1− Ti)
1− p̂i

+Bi = 1 ⇒ Bi = 1− 1

π

p̂i(1− Ti)
1− p̂i

.

Thus,
n∑
i=1

1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i
− η0

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
= 0 (18)

solves for ν̂0,IPW1 when η0 = ν0 and it solves for ν̂0,IPW2 when η0 = 0. The solution to (18) is:

ν̃0 (η0) =

[
n∑
i=1

1

π

p̂i(1− Ti)
1− p̂i

]−1 n∑
i=1

[
1

π

p̂i(1− Ti)Yi
1− p̂i

− η0

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]
. (19)

Step 2: Find η∗0 that minimizes the variance of (19)

Subtract ν0 from both sides to get:

ν̃0 − ν0 =

[
n∑
i=1

1

π

p̂i(1− Ti)
1− p̂i

]−1 n∑
i=1

[
1

π

p̂i(1− Ti)Yi
1− p̂i

− η0

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]

−

[
n∑
i=1

1

π

p̂i(1− Ti)
1− p̂i

]−1 [ n∑
i=1

1

π

p̂i(1− Ti)
1− p̂i

]
︸ ︷︷ ︸

1

ν0

=

[
1

n

n∑
i=1

1

π

p̂i(1− Ti)
1− p̂i

]−1
1

n

n∑
i=1

[
1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i
− η0

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]
.

Thus,

√
n (ν̃0 − ν0) =

[
1

n

n∑
i=1

Ci

]−1
√
n

1

n

n∑
i=1

{Ai − η0Bi}

where,

Ai =
1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i
; Bi = 1− 1

π

p̂i(1− Ti)
1− p̂i

; Ci =
1

π

p̂i(1− Ti)
1− p̂i

and E [Bi] = 0; E [Ci] = 1

Using a LLN and continuity of probability limits,
[

1
n

∑n
i=1 Ci

]−1 p→ 1 and since E [Ai − η0Bi] = 0

using a CLT
√
n 1
n

∑n
i=1 {Ai − η0Bi}

d→ N (0, V [Ai − η0Bi]) . Consequently,

√
n (µ̃0 − µ0)

d→ N (0, V [Ai − η0Bi]) .

Minimizing the variance with respect to η0is the same as finding the least squares estimator of
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η0 in a regression of Ai on Bi. That is,

η∗0 = Cov [Ai, Bi] (V [Bi])
−1 ,

where since E [Bi] = 0,

V [Bi] = E

[(
1− 1

π

p̂i(1− Ti)
1− p̂i

)2
]
,

Cov [Ai, Bi] = E

[(
1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]
.

Thus,

η0 =

(
E

[(
1− 1

π

p̂i(1− Ti)
1− p̂i

)2
])−1

E

[(
1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]
,

which can be rewritten as

E

[(
1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
+ η∗0

[(
1− 1

π

p̂i(1− Ti)
1− p̂i

)2
]]

= 0.

This suggests a second moment condition

n∑
i=1

(
1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
+ η0

[(
1− 1

π

p̂i(1− Ti)
1− p̂i

)2
]

= 0. (20)

Step 3. Solve system (18) and (20)

Using (20)

η0 =

[
n∑
i=1

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)2
]−1 [ n∑

i=1

(
1
π

p̂i(1− Ti) (Yi − ν0)
1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]
.
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Thus,

η0

[
n∑
i=1

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]
=

[
n∑
i=1

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)2
]−1 [ n∑

i=1

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]
︸ ︷︷ ︸×

C0

×

[
n∑
i=1

(
1
π

p̂i(1− Ti) (Yi − ν0)
1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)]

= C0

n∑
i=1

(
1
π

p̂i(1− Ti) (Yi − ν0)
1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)

=
n∑
i=1

(
1
π

p̂i(1− Ti) (Yi − ν0)
1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
C0.

Substituting in (18)

n∑
i=1

1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i
−
(

1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i

)(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
C0 = 0,

n∑
i=1

1

π

p̂i(1− Ti) (Yi − ν0)

1− p̂i

(
1−

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
C0

)
= 0.

Therefore

ν̂0,IPW3 =

[
n∑
i=1

1

π

p̂i(1− Ti)
1− p̂i

(
1−

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
C0

)]−1

×

×
n∑
i=1

1

π

p̂i(1− Ti)Yi
1− p̂i

(
1−

(
1− 1

π

p̂i(1− Ti)
1− p̂i

)
C0

)
.

Appendix II. Derivation of SEB for proposed DGPs

This appendix derives the SEBs of Hahn (1998) for the DGPs we study. As noted in the text, we

assume that both Xi and ei follow independent standard normal distributions. For ui, we consider

two possible distributions, standard Cauchy and standard normal. For the standard Cauchy case,

we have F (u) = 1
π

arctan(Xi)
1
2

and for the standard normal case, we have F (u) = Φ(u).

Theorems 1 and 2 of Hahn (1998) provide SEBs for ATE and TOT. We next compute the terms

of these bounds for the case of unknown propensity score for the DGPs specified in equations (10)

to (12) The functional form of these bounds are given in the text in equations (6) to (7).
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Let σ2 denote the variance of ei. Then we have

Y 1
i = β + (γ + δ)m(p(Xi)) + (1 + ψp(Xi)) ei,

E
[
Y 1
i

∣∣Xi

]
= β + (γ + δ)m(p(Xi)),

σ2
1(Xi) = E

[(
Y 1
i − E

[
Y 1
i |Xi

])2 ∣∣Xi

]
= (1 + ψp(Xi))

2 σ2,

Y 0
i = γm(p(Xi)) + (1− ψ(1− p(Xi)))ei,

E
[
Y 0
i

∣∣Xi

]
= γm(p(Xi)),

σ2
0(Xi) = E

[(
Y 0
i − E

[
Y 0
i |Xi

])2 ∣∣Xi

]
= (1− ψ(1− p(Xi)))

2 σ2,

τ (Xi) = β + δm (p (Xi)) .

In order to compute the SEBs we need to find the expectation of the following functions:

1. Expressions involving the variance of the treated (first term of the SEB):

σ2
1(Xi)

p(Xi)
=

(1 + ψp(Xi))
2 σ2

p(Xi)
= σ2

(
1

p(Xi)
+ 2ψ + ψ2p (Xi)

)
,

σ2
1(Xi)p(Xi) = (1 + ψp(Xi))

2 σ2p (Xi) = σ2
(
ψ2p (Xi)

3 + 2ψp(Xi)
2 + p (Xi)

)
.

2. Expressions involving the variance of the controls (second term of the SEB)

σ2
0(Xi)

1− p(Xi)
= σ2 (1− ψ(1− p(Xi)))

2

1− p(Xi)

= σ2

(
1

1− p(Xi)
+ ψ2(1− p(Xi))− 2ψ

)
,

σ2
0(Xi)p(Xi)

2

1− p(Xi)
= σ2 (1− ψ(1− p(Xi)))

2 p(Xi)
2

1− p(Xi)

= σ2

(
p(Xi)

2

1− p(Xi)
+ ψ2(1− p(Xi))p(Xi)

2 − 2ψp(Xi)
2

)
.

3. Thus the first 2 terms of the ATE and the TOT are

σ2
1(Xi)

p(Xi)
+

σ2
0(Xi)

1− p(Xi)
= σ2

(
1

p (Xi)
+

1

1− p (Xi)
+ ψ2

)
,

σ2
1(Xi)p(Xi) +

σ2
0(Xi)p(Xi)

2

(1− p(Xi))
= σ2

(
p (Xi) +

p (Xi)
2

1− p (Xi)
+ ψ2p (Xi) .

2

)
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4. Expressions capturing the heterogeneity of the treatment (third term of the SEB)

(τ(Xi)− α)2 = (β − α)2 + δ2 [m (p (Xi))]
2 +

+2 (β − α) δm (p (Xi)) ,

p(Xi)(τ(Xi)− θ)2 = (β − θ)2 p (Xi) + δ2 [m (p (Xi))]
2 p (Xi) +

+2 (β − θ) δm (p (Xi)) p (Xi) ,

p(Xi)
2(τ(Xi)− θ)2 = (β − θ)2 p (Xi)

2 + δ2 [m (p (Xi))]
2 p (Xi)

2 +

+2 (β − θ) δm (p (Xi)) p (Xi)
2 .

Therefore computation of the SEB involves computation of the integrals

1. For k = −1, 1, 2

A1 (k) = E
[
p (Xi)

k
]

=

∫ ∞
−∞

[Fu (η + κXi)]
k fX (x) dx.

2. For k = 0, 2

A2 (k) = E

[
p (Xi)

k

1− p (Xi)

]
=

∫ ∞
−∞

[Fu (η + κXi)]
k

1− Fu (η + κXi)
fX (x) dx.

3. For h = 1, 2 ; k = 0, 1, 2 ; j = 1, 2

A3 (h, k) = E
[
mj (p (Xi))

h p (Xi)
k
]

=

∫ ∞
−∞

[
mj (Fu (η + κXi))

h
]h

[Fu (η + κXi)]
k fX (x) dx.

Aside from A1(−1) and A2(0), these integrals are readily computed using mathematical software or

simulation. In the case where ui is distributed standard normal and κ is close to 1, the 2 integrals

listed are highly difficult to compute with any accuracy. For this case, we use an approach suggested

to us by Matias Cattaneo. Consider A1(−1) and A2 (0) in the case with ui distributed standard

normal. We have, for c = 1/|κ| > 1,

E

[
1

p(Xi)

]
=

∫ ∞
−∞

φ(x)

Φ(η + κx)
dx = c

∫ 0

−∞

φ(c(t− η))

Φ(t)
dt+ c

∫ ∞
0

φ(c(t− η))

Φ(t)
dt

= c

∫ ∞
0

φ(c(t+ η))

1− Φ(t)
dt+ c

∫ ∞
0

φ(c(t− η))

Φ(t)
dt (21)

E

[
1

1− p(Xi)

]
=

∫ ∞
−∞

φ(x)

1− Φ(η + κx)
dx = c

∫ ∞
0

φ(c(t− η))

1− Φ(t)
dt+ c

∫ 0

−∞

φ(c(t− η))

1− Φ(t)
dt

= c

∫ ∞
0

φ(c(t− η))

1− Φ(t)
dt+ c

∫ ∞
0

φ(c(t+ η))

Φ(t)
dt. (22)

The second integral in (21) and (22) is easy to simulate accurately because the numerator has

rapidly declining tails and the denominator is always between 0.5 and 1. The first integral in both
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expressions is very difficult to simulate because the denominator is near zero for much of the domain.

To handle this problem, we break the first integral into 2 pieces

c

∫ ∞
0

φ(c(t+ b))

1− Φ(t)
dt = c

∫ a

0

φ(c(t+ b))

1− Φ(t)
dt+ c

∫ ∞
a

φ(c(t+ b))

1− Φ(t)
dt, (23)

for b ∈ {−η, η} and a a moderate number such as 5. It is easy to simulate
∫ a

0
φ(c(t+b))
1−Φ(t)

dt, and we can

directly bound
∫∞
a

φ(c(t+b))
1−Φ(t)

dt using the inequality

t

1 + t2
φ(t) < 1− Φ(t) <

1

t
φ(t), (24)

which is valid for any t > 0 and is highly accurate for any t above 4.

Applying the inequality, we have∫ ∞
a

φ(c(t+ b))

1− Φ(t)
dt >

∫ ∞
a

t
φ(c(t+ b))

φ(t)
dt (25)

>

∫ ∞
a

t exp

(
−1

2

(
c2(t+ b)2 − t2

))
dt ≡ LB. (26)

Completing squares, we have

LB =

∫ ∞
a

t exp

[
−1

2

(
c2 − 1

)(
t2 +

c2b2

(c2 − 1)
+ 2

c2b

(c2 − 1)
t

)]
dt (27)

=

∫ ∞
a

t exp

[
−1

2

1

σ2

(
t2 − 2µt+ µ2

)
+
µ (b+ µ)

2σ2

]
dt (28)

= exp

[
µ (b+ µ)

2σ2

] ∫ ∞
a

t exp

[
−1

2

(
t− µ
σ

)2
]
dt (29)

= exp

[
µ (b+ µ)

2σ2

]√
2πσ2

∫ ∞
d

(σt+ µ)φ (t) dt (30)

= exp

[
µ (b+ µ)

2σ2

]√
2πσ2 [σφ (d) + µ [1− Φ (d)]] , (31)

where µ = −c2b/(c2 − 1) , σ2 = 1/(c2 − 1), and d = (a− µ) /σ.

For the upper bound, apply the inequality again to obtain∫ ∞
a

φ(c(t+ b))

1− Φ(t)
dt <

∫ ∞
a

1 + t2

t

φ(c(t+ b))

φ(t)
dt (32)

<

∫ ∞
a

1

t

φ(c(t+ b))

φ(t)
dt+

∫ ∞
a

t
φ(c(t+ b))

φ(t)
dt (33)

<
1

a

∫ ∞
a

φ(c(t+ b))

φ(t)
dt+ LB ≡ UB. (34)
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It is easy to show that∫ ∞
a

φ(c(t+ b))

φ(t)
dt =

∫ ∞
a

φ(c(t+ b))

φ(t)
dt =

∫ ∞
a

exp

(
−1

2

(
c2(t+ b)2 − t2

))
dt (35)

= exp

[
µ (b+ µ)

2σ2

]√
2πσ2

∫ ∞
a

exp

[
−1

2

(
t− µ
σ

)2
]
dt (36)

= exp

[
µ (b+ µ)

2σ2

]√
2πσ2 (1− Φ (d)) . (37)

In summary, we have

LB <

∫ ∞
a

φ (c(t+ b))

1− Φ(t)
dt < UB (38)

where,

LB = exp

[
µ (b+ µ)

2σ2

]√
2πσ2 [σφ (d) + µ [1− Φ (d)]] , (39)

UB = LB + exp

[
µ (b+ µ)

2σ2

] √
2πσ2

a
(1− Φ (d)) , (40)

and

µ =
−c2b

(c2 − 1)
; σ2 =

1

(c2 − 1)
; d =

a− µ
σ

; c =
1

κ
; b ∈ {−η, η} . (41)

For example, for η = −0.3, κ = 0.8 and a = 7 the lower bound for this integral is 0.0000515 and

the upper bound is 0.0000526. For η = 0, κ = 0.95 and a = 7 the lower bound is 0.656062 and the

upper bound is 0.667721.

Appendix Figure 1 graphs the upper and lower bounds on the integral above, for η = 0, a = 7,

and κ ranging from 0.9 to 0.999. This graph makes two points. First, the bounds are extremely

accurate globally in κ. Second, the integral in question is an amazingly convex function of κ. Highly

similar patterns hold for other values of η.
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Figure 1.A: Overlap Plots, by design (Normal-Cauchy model) 
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Figure 1.B: Overlap Plots, by design (Normal-Normal model) 
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Figure 2: Overlap Plots, by design (Normal-Normal model) 
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Sample Size Setting
Pair 

match
Blocking k-NN

Kernel 
match 
(Epa)

Kernel 
match 

(Gauss)

LLR 
match 
(Epa)

LLR 
match 

(Gauss)

Ridge 
match 
(Epa)

Ridge 
match 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

A. Simulated Root 100 I.   Homog.-Homosk. 5.2 25.1* 42.5* 35.5* 39.5* 39.0* 39.5* 9.2* 12.8* 3.2 4.0 4.9* 2.5 3.0
    Mean Squared Bias II.  Heterog.-Homosk. 2.8 44.4* 41.9* 34.9* 39.2* 38.4* 39.3* 7.8* 12.0* 1.4 2.4 3.1 5.0* 2.0
    (x 1000) III. Homog.-Heterosk. 5.0 26.9* 35.3* 26.8* 28.6* 11.2* 13.0* 8.5* 10.7* 3.5 4.1 4.8 4.1 3.8

IV. Heterog.-Heterosk. 3.3 42.6* 34.0* 25.0* 26.9* 10.9* 13.2* 6.1* 8.3* 2.2 2.1 2.5 6.5* 2.3

All 4.2 35.8* 38.6* 30.9* 34.0* 28.5* 29.4* 8.0* 11.1* 2.7 3.3 4.0* 4.8* 2.9
F-stat (no bias) 37.7 3505.5 5276.1 3309.3 4163.6 2144.7 2384.1 183.4 379.0 19.3 30.9 46.0 58.5 18.8
[p-value] [0.037] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.734] [0.155] [0.004] [0.000] [0.760]

500 I.   Homog.-Homosk. 2.4 7.6* 36.0* 30.2* 33.4* 2.9 2.9 3.1 4.9* 2.3 2.3 2.2 1.9 1.7
II.  Heterog.-Homosk. 2.2 7.7* 32.9* 27.8* 31.1* 2.1 1.8 1.7 2.9 1.9 1.9 1.8 2.6 2.0
III. Homog.-Heterosk. 2.4 6.8* 23.2* 16.2* 17.9* 2.4 2.4 2.6 3.2 2.3 2.3 2.2 2.3 2.4
IV. Heterog.-Heterosk. 2.3 9.8* 25.0* 17.5* 19.4* 2.4 2.7 3.2 4.3 2.2 2.2 2.4 1.6 2.2

All 2.3 8.0* 29.8* 23.7* 26.4* 2.5 2.5 2.7 3.9* 2.2 2.2 2.2 2.2 2.1
F-stat (no bias) 12.1 182.4 3094.5 2043.2 2548.8 17.6 18.1 20.6 45.8 13.7 13.9 13.5 14.0 11.9
[p-value] [0.979] [0.000] [0.000] [0.000] [0.000] [0.824] [0.800] [0.662] [0.005] [0.953] [0.949] [0.958] [0.946] [0.981]

B. Simulated 100 I.   Homog.-Homosk. 103.3* 68.9* 53.5* 56.2* 54.5* 82.4* 78.5* 67.4* 64.0* 72.2* 65.8* 65.5* 65.8* 89.3*
    Average Variance II. Heterog.-Homosk. 106.2* 74.9* 54.9* 57.6* 55.7* 84.1* 80.0* 68.9* 65.4* 73.0* 66.9* 66.8* 67.2* 91.4*
    (x 1000) III. Homog.-Heterosk. 119.0* 110.1* 108.0 109.0 108.8 113.7* 113.0* 111.7 111.1 118.4* 112.6* 112.0* 117.6* 115.9*

IV. Heterog.-Heterosk. 118.1* 113.7* 107.0* 107.8* 107.6* 112.9* 112.1 110.5 110.0 117.6* 111.7 110.9 117.0* 115.5*

Average (V-SEB)/SEB 0.376 0.083 -0.078 -0.052 -0.067 0.180 0.145 0.050 0.020 0.116 0.040 0.035 0.064 0.247
F-stat (V = SEB) 418.6 45.4 73.0 30.1 54.5 158.5 116.4 17.5 4.0 60.1 9.7 8.3 19.5 243.7
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

500 I.   Homog.-Homosk. 21.1* 12.8 11.2* 11.2* 11.1* 13.5* 12.9 13.0 12.6 13.3* 12.6 12.6 12.6 12.9
II. Heterog.-Homosk. 21.5* 13.3* 11.6* 11.4* 11.3* 13.6* 13.2* 13.2* 12.8 13.7* 12.9 12.9 13.0 13.3*
III. Homog.-Heterosk. 24.1* 21.8 21.2 21.5 21.5 22.2 22.0 22.0 21.8 22.6 21.9 21.8 21.9 21.9
IV. Heterog.-Heterosk. 24.1* 22.3 21.5 21.8 21.8 22.5 22.3 22.3 22.2 23.0 22.3 22.2 22.4 22.3

Average (V-SEB)/SEB 0.398 0.021 -0.060 -0.055 -0.062 0.048 0.025 0.027 0.009 0.059 0.012 0.010 0.014 0.025
F-stat (V = SEB) 88.8 1.6 11.3 9.5 12.3 3.3 1.4 1.5 0.7 3.9 0.8 0.7 0.9 1.6
[p-value] [0.000] [0.032] [0.000] [0.000] [0.000] [0.000] [0.097] [0.064] [0.817] [0.000] [0.793] [0.817] [0.584] [0.032]

Table 1: Bias and Variance of the Estimated Treatment Effect on the Treated (TOT)
Normal-Cauchy Model

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.



Misspec.    
Type

Setting
Pair 

match
Blocking k-NN

Kernel 
match 
(Epa)

Kernel 
match 

(Gauss)

LLR 
match 
(Epa)

LLR 
match 

(Gauss)

Ridge 
match 
(Epa)

Ridge 
match 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

A. Simulated Root Xs I.   Homog.-Homosk. 127.2* 123.2* 142.4* 141.1* 142.6* 155.4* 153.3* 128.7* 130.4* 125.4* 125.6* 125.9* 125.2* 124.9*
    Mean Squared Bias II.  Heterog.-Homosk. 126.4* 120.9* 143.1* 141.6* 143.1* 156.3* 154.0* 128.8* 130.5* 125.3* 125.7* 126.2* 123.7* 125.1*
    (x 1000) III. Homog.-Heterosk. 125.5* 122.7* 140.8* 139.3* 140.6* 131.4* 132.3* 127.7* 129.4* 124.6* 124.9* 125.2* 124.5* 124.2*

IV. Heterog.-Heterosk. 126.1* 120.1* 142.2* 140.7* 142.1* 131.8* 132.8* 128.4* 130.4* 125.5* 125.9* 126.2* 123.2* 124.9*

All 126.3* 121.7* 142.1* 140.7* 142.1* 144.2* 143.5* 128.4* 130.2* 125.2* 125.5* 125.9* 124.1* 124.8*
F-stat (no bias) 36397.5 46067.5 69490.6 67500.6 70217.2 56723.0 58158.0 51241.9 54298.3 49436.3 50884.0 51261.2 48656.0 43699.7
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Dist of u. I.   Homog.-Homosk. 5.4 27.3* 42.6* 37.0* 40.7* 39.5* 41.1* 9.5* 12.9* 22.6* 7.6* 6.5* 2.4 2.1
II.  Heterog.-Homosk. 3.0 47.3* 42.3* 36.3* 40.1* 39.1* 40.3* 8.4* 12.1* 19.5* 4.7* 3.9 7.3* 4.0
III. Homog.-Heterosk. 5.4 28.7* 36.1* 29.4* 31.8* 12.8* 15.5* 9.3* 11.5* 21.8* 7.9* 7.1* 4.0 3.8
IV. Heterog.-Heterosk. 3.6 46.1* 34.7* 27.9* 30.3* 12.7* 15.8* 7.1* 9.2* 21.0* 7.9* 6.1* 8.6* 3.1

All 4.5 38.5* 39.1* 32.9* 36.0* 29.2* 30.8* 8.6* 11.5* 21.3* 7.2* 6.0* 6.1* 3.3
F-stat (no bias) 42.4 4067.8 5378.4 3728.1 4597.8 2209.3 2587.9 212.0 402.1 744.2 130.1 98.5 99.0 23.8
[p-value] [0.012] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.474]

B. Simulated Xs I.   Homog.-Homosk. 87.4* 55.0* 48.3* 48.8* 47.7* 67.2* 64.3* 55.8* 53.6* 54.9* 53.0* 52.9* 53.8* 64.9*
    Average Variance II. Heterog.-Homosk. 88.0* 59.0* 49.9* 50.2* 49.1* 68.8* 65.6* 57.0* 54.8* 56.0* 54.3* 54.2* 55.0* 66.3*
    (x 1000) III. Homog.-Heterosk. 132.7* 121.7* 121.4* 121.5* 121.3* 125.5* 124.8* 123.2* 122.5* 124.4* 122.6* 122.5* 128.3* 126.3*

IV. Heterog.-Heterosk. 132.5* 124.6* 121.8* 121.9* 121.7* 125.6* 125.2* 123.5* 123.0* 124.4* 122.9* 122.8* 128.7* 126.6*

Average (V-SEB)/SEB -0.066 -0.266 -0.314 -0.311 -0.318 -0.197 -0.216 -0.268 -0.282 -0.270 -0.285 -0.286 -0.261 -0.208
F-stat (V = SEB) 36.0 1079.7 2031.3 1955.7 2150.8 460.2 580.3 1095.5 1323.2 1186.4 1387.9 1401.2 1258.8 512.1
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Dist of u. I.   Homog.-Homosk. 103.1* 68.6* 53.1* 55.4* 53.9* 82.9* 78.9* 67.2* 63.8* 93.3* 72.2* 67.3* 68.5* 93.0*
II. Heterog.-Homosk. 105.9* 74.9* 54.5* 56.7* 55.1* 84.1* 80.0* 68.5* 65.3* 93.8* 73.3* 68.9* 70.1* 96.5*
III. Homog.-Heterosk. 118.7* 110.2* 107.5* 108.8 108.7 114.1* 113.9* 111.7* 111.2 138.9* 118.7* 114.8* 121.4* 118.7*
IV. Heterog.-Heterosk. 117.8* 114.4* 106.4* 107.7* 107.4* 113.4* 113.0* 110.6 110.1 145.4* 118.5* 114.0* 121.4* 117.6*

Average (V-SEB)/SEB 0.373 0.084 -0.084 -0.060 -0.073 0.184 0.150 0.047 0.019 0.383 0.118 0.063 0.105 0.293
F-stat (V = SEB) 415.7 46.4 77.1 40.0 62.1 162.5 119.1 16.1 3.5 418.4 80.3 27.9 61.0 296.0
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Table 2: Bias and Variance of the Estimated Treatment Effect on the Treated (TOT) under Misspecification
Misspecification of the Propensity Score in the Normal-Cauchy Model (sample size 100)

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.



N Setting
Pair 

match
Blocking k-NN

Kernel 
match 
(Epa)

Kernel 
match 

(Gauss)

LLR 
match 
(Epa)

LLR 
match 

(Gauss)

Ridge 
match 
(Epa)

Ridge 
match 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

A. Simulated Root 100 I.   Homog.-Homosk. 19.3* 45.1* 88.8* 70.5* 76.7* 54.2* 55.4* 26.9* 32.1* 15.8* 16.7* 16.8* 3.3 7.8*
    Mean Squared Bias II.  Heterog.-Homosk. 16.5* 66.3* 87.4* 68.6* 75.1* 53.3* 55.0* 25.4* 30.4* 12.8* 14.8* 15.4* 16.9* 7.6*
    (x 1000) III. Homog.-Heterosk. 14.4* 43.4* 76.1* 55.4* 58.7* 21.6* 25.4* 24.4* 27.5* 15.2* 13.8* 13.9* 3.7 6.6

IV. Heterog.-Heterosk. 14.6* 67.4* 74.8* 54.2* 57.9* 21.1* 24.3* 23.0* 26.7* 15.0* 12.4* 12.9* 19.5* 5.7

All 16.3* 56.7* 82.0* 62.6* 67.7* 40.9* 42.8* 24.9* 29.3* 14.7* 14.5* 14.8* 13.2* 7.0*
F-stat (no bias) 428.2 6163.6 21354.4 11216.0 13439.8 3071.5 3564.4 1385.7 1989.8 267.3 422.9 466.7 335.6 69.9
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

500 I.   Homog.-Homosk. 7.8* 17.1* 72.1* 52.8* 58.4* 12.0* 14.2* 14.1* 17.4* 3.1 6.3 7.7* 4.0 6.4*
II.  Heterog.-Homosk. 5.9 16.4* 68.7* 50.1* 55.4* 9.8* 12.1* 11.5* 15.4* 4.7 4.1 4.5 8.5* 3.5
III. Homog.-Heterosk. 4.1 15.0* 60.3* 36.9* 40.5* 7.3* 8.4* 11.0* 13.1* 4.4 3.8 5.4 2.7 3.5
IV. Heterog.-Heterosk. 7.3 17.4* 60.7* 37.2* 40.7* 9.6* 9.9* 12.2* 14.1* 4.6 6.7 7.5* 6.4 5.0

All 6.4* 16.5* 65.7* 44.9* 49.4* 9.8* 11.4* 12.3* 15.1* 4.3 5.4* 6.4* 5.8* 4.7
F-stat (no bias) 52.8 487.7 12564.8 5392.8 6719.7 167.8 251.3 285.5 461.6 23.6 43.6 71.8 68.1 42.0
[p-value] [0.001] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.482] [0.009] [0.000] [0.000] [0.013]

B. Simulated 100 I.   Homog.-Homosk. 139.6* 104.8* 58.0* 66.5* 64.9* 117.1* 108.8* 88.7* 84.6* 166.8* 98.1* 93.1* 92.7* 166.2*
    Average Variance II. Heterog.-Homosk. 143.6* 122.1* 59.2* 68.5* 66.7* 119.0* 111.4* 91.4* 87.1* 162.3* 101.5* 96.0* 96.5* 169.4*
    (x 1000) III. Homog.-Heterosk. 152.0* 141.2* 120.1* 127.9* 128.1* 140.8* 139.3* 133.4* 133.0* 207.5* 149.1* 142.2* 152.8* 162.2*

IV. Heterog.-Heterosk. 151.7* 156.0* 120.0* 127.1* 126.8* 139.6* 138.6* 132.7* 132.1* 195.2* 149.0* 142.2* 153.6* 161.6*

Average (V-SEB)/SEB -0.280 -0.375 -0.570 -0.533 -0.537 -0.369 -0.392 -0.459 -0.472 -0.165 -0.404 -0.432 -0.410 -0.190
F-stat (V = SEB) 6454.1 8872.2 46732.8 31680.5 33472.8 9986.0 11525.1 17199.1 18762.0 2701.3 11956.3 13919.1 12969.7 4169.5
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

500 I.   Homog.-Homosk. 33.7* 21.4* 13.2* 15.0* 14.6* 22.1* 20.2* 19.8* 18.7* 39.8* 24.5* 21.0* 21.4* 21.9*
II. Heterog.-Homosk. 33.9* 22.8* 13.2* 14.9* 14.5* 22.0* 20.1* 19.7* 18.7* 36.3* 24.2* 20.8* 21.4* 21.6*
III. Homog.-Heterosk. 35.7* 29.8* 24.2* 26.9* 26.8* 30.6* 29.8* 28.7* 28.4* 44.3* 34.4* 30.6* 31.7* 29.7*
IV. Heterog.-Heterosk. 36.4* 30.8* 24.5* 27.1* 26.9* 30.9* 29.7* 28.9* 28.6* 86.9* 34.2* 30.7* 31.7* 29.7*

Average (V-SEB)/SEB -0.162 -0.379 -0.547 -0.503 -0.510 -0.375 -0.409 -0.423 -0.439 -0.011 -0.322 -0.393 -0.380 -0.387
F-stat (V = SEB) 627.6 1754.0 7311.1 4590.5 4981.7 1688.7 2165.0 2390.6 2688.4 244.4 1087.3 1904.1 1704.4 1877.6
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.

Table 3: Bias and Variance of the Estimated Treatment Effect on the Treated (TOT)
Normal-Normal Model



Trimming Setting
Pair 

match
Blocking k-NN

Kernel 
match 
(Epa)

Kernel 
match 

(Gauss)

LLR 
match 
(Epa)

LLR 
match 

(Gauss)

Ridge 
match 
(Epa)

Ridge 
match 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

Rule 1 I.   Homog.-Homosk. 6.2* 34.3* 56.5* 46.5* 51.8* 49.5* 48.6* 11.0* 15.4* 8.9* 5.4* 4.2 2.2 4.1
II.  Heterog.-Homosk. 44.8* 69.2* 23.0* 24.6* 24.3* 53.5* 54.4* 39.7* 35.2* 47.8* 45.0* 46.9* 55.4* 48.3*
III. Homog.-Heterosk. 5.4 30.7* 49.5* 37.9* 40.7* 17.9* 20.1* 10.9* 14.1* 11.7* 5.4 4.3 4.0 3.8
IV. Heterog.-Heterosk. 43.5* 66.0* 19.1* 21.8* 19.9* 45.2* 46.6* 37.9* 34.6* 47.5* 44.1* 45.7* 53.3* 47.5*

All 31.5* 53.1* 40.4* 34.2* 36.5* 43.8* 44.4* 28.5* 26.8* 34.5* 31.7* 32.9* 38.5* 34.0*
F-stat (no bias) 1750.2 5867.8 4868.6 3309.1 3921.1 4082.7 4373.9 1891.3 1729.6 2662.4 2343.6 2461.9 3404.0 2156.7
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 2 I.   Homog.-Homosk. 16.7* 44.6* 89.3* 70.2* 77.2* 53.5* 54.6* 25.7* 31.3* 13.0* 20.0* 23.2* 1.8 5.7
II.  Heterog.-Homosk. 22.2* 64.1* 96.0* 77.0* 83.9* 60.6* 62.2* 30.7* 36.2* 18.3* 26.3* 29.3* 15.0* 11.4*
III. Homog.-Heterosk. 16.1* 41.8* 80.8* 59.1* 62.7* 23.4* 27.7* 25.9* 29.5* 14.2* 20.9* 23.6* 3.9 5.7
IV. Heterog.-Heterosk. 21.9* 64.8* 87.3* 66.3* 70.3* 30.4* 33.8* 32.4* 36.2* 21.9* 28.7* 30.9* 15.4* 11.9*

All 19.4* 54.9* 88.5* 68.4* 73.9* 44.7* 46.8* 28.8* 33.5* 17.2* 24.2* 27.0* 11.0* 9.2*
F-stat (no bias) 569.1 5531.9 23283.6 12403.4 14937.3 3423.2 3971.0 1708.3 2405.7 344.7 1085.5 1481.9 230.6 114.0
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 3 I.   Homog.-Homosk. 2.3 3.3 49.8* 41.6* 47.2* 42.3* 40.3* 5.3* 9.2* 139.4* 34.7* 12.7* 1.8 1.7
II.  Heterog.-Homosk. 50.3* 48.3* 22.3* 27.3* 26.2* 54.5* 54.4* 47.2* 42.6* 155.5* 83.9* 62.0* 35.7* 49.7*
III. Homog.-Heterosk. 4.2 4.6 42.9* 33.0* 36.2* 14.6* 16.4* 7.1* 9.5* 137.2* 35.4* 14.6* 5.3 4.6
IV. Heterog.-Heterosk. 48.9* 45.8* 20.5* 27.0* 24.0* 50.7* 51.3* 45.6* 42.4* 151.5* 82.2* 60.8* 34.6* 48.7*

All 35.1* 33.4* 36.2* 32.8* 34.7* 43.4* 43.3* 33.1* 30.8* 146.1* 63.7* 44.5* 25.0* 34.9*
F-stat (no bias) 2364.1 2587.8 3980.7 3168.6 3728.1 4519.7 4571.4 2742.5 2449.6 23016.7 7638.3 4646.7 1332.2 3071.5
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 4 I.   Homog.-Homosk. 5.6 37.8* 59.3* 48.2* 53.8* 47.6* 46.8* 10.1* 14.9* 7.4* 2.4 3.5 2.3 2.9
II.  Heterog.-Homosk. 38.0* 70.8* 31.9* 27.2* 29.5* 51.8* 52.3* 32.8* 28.6* 41.4* 40.6* 39.4* 45.5* 40.7*
III. Homog.-Heterosk. 5.4 35.6* 53.2* 40.1* 42.8* 17.6* 19.9* 11.4* 14.8* 5.7 4.2 4.8 3.6 3.1
IV. Heterog.-Heterosk. 38.5* 69.4* 27.4* 22.5* 21.7* 40.8* 42.4* 32.9* 29.8* 42.5* 41.6* 40.1* 45.6* 42.0*

All 27.3* 56.0* 45.1* 36.0* 39.0* 41.6* 42.2* 24.4* 23.2* 30.0* 29.2* 28.3* 32.3* 29.3*
F-stat (no bias) 1345.5 6791.7 6219.9 3780.3 4623.4 3790.0 4049.8 1400.9 1309.3 1931.8 1973.8 1868.4 2387.4 1708.9
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.

Table 4: Simulated Root Mean Squared Bias (x 1000) of the Estimated Treatment Effect on the Treated (TOT)
Trimming Results in the Normal-Normal Model (Sample size 100)



Trimming Setting
Pair 

match
Blocking k-NN

Kernel 
match 
(Epa)

Kernel 
match 

(Gauss)

LLR 
match 
(Epa)

LLR 
match 

(Gauss)

Ridge 
match 
(Epa)

Ridge 
match 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

Rule 1 I.   Homog.-Homosk. 125.7* 86.7* 61.1* 66.2* 63.5* 102.7* 97.6* 81.6* 77.4* 85.2* 79.0* 81.8* 79.5* 111.3*
II. Heterog.-Homosk. 128.0* 99.6* 62.8* 67.7* 65.4* 105.2* 100.0* 83.9* 79.4* 87.3* 81.6* 84.2* 81.2* 114.0*
III. Homog.-Heterosk. 141.9* 134.1* 127.2* 130.0* 130.1* 136.6* 136.1* 132.7* 132.3* 141.5* 134.9* 136.1* 143.1* 141.7*
IV. Heterog.-Heterosk. 141.9* 144.5* 128.5* 130.9* 130.9* 137.0* 136.8* 133.6* 133.0* 142.9* 136.5* 137.2* 145.1* 141.6*

Average (V-SEB)/SEB -0.331 -0.441 -0.545 -0.526 -0.533 -0.411 -0.426 -0.476 -0.490 -0.451 -0.480 -0.471 -0.462 -0.380
F-stat (V = SEB) 9263.8 15514.0 40067.8 32825.1 35463.8 13319.6 14776.0 20859.7 23178.4 17567.5 21230.5 19582.3 20380.1 10186.5
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 2 I.   Homog.-Homosk. 149.0* 111.0* 60.6* 70.3* 68.1* 124.0* 114.7* 94.1* 89.3* 170.7* 99.4* 91.0* 96.1* 176.1*
II. Heterog.-Homosk. 150.5* 128.4* 61.6* 71.6* 69.5* 124.7* 116.7* 96.0* 91.4* 172.2* 102.5* 93.3* 99.8* 176.5*
III. Homog.-Heterosk. 157.6* 147.0* 124.5* 132.1* 132.4* 145.7* 144.0* 138.1* 137.6* 214.2* 153.8* 143.8* 159.7* 167.3*
IV. Heterog.-Heterosk. 157.0* 162.7* 124.7* 132.0* 132.1* 145.3* 144.5* 137.9* 137.6* 213.7* 152.9* 143.8* 159.8* 167.6*

Average (V-SEB)/SEB -0.249 -0.348 -0.554 -0.515 -0.520 -0.344 -0.369 -0.437 -0.451 -0.123 -0.394 -0.437 -0.391 -0.162
F-stat (V = SEB) 5497.7 7484.9 42164.2 27865.0 29746.0 8474.7 9822.4 14735.8 16190.7 2447.2 11114.9 14281.3 11368.1 3468.4
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 3 I.   Homog.-Homosk. 111.0* 79.3* 59.3* 62.1* 59.2* 88.6* 85.7* 72.8* 68.7* 202.0* 102.6* 77.9* 82.2* 71.9*
II. Heterog.-Homosk. 112.8* 82.6* 60.9* 63.8* 61.2* 90.7* 88.1* 75.0* 70.9* 202.1* 105.2* 79.6* 84.7* 73.6*
III. Homog.-Heterosk. 139.7* 135.6* 127.5* 130.0* 129.7* 135.6* 134.9* 133.0* 132.2* 226.8* 158.4* 140.1* 164.8* 132.4*
IV. Heterog.-Heterosk. 139.3* 137.6* 128.3* 130.3* 130.1* 135.7* 135.3* 133.2* 132.6* 226.7* 157.7* 140.4* 165.0* 132.7*

Average (V-SEB)/SEB -0.374 -0.476 -0.550 -0.538 -0.546 -0.452 -0.461 -0.501 -0.514 -0.021 -0.377 -0.475 -0.415 -0.506
F-stat (V = SEB) 11858.0 20730.0 42775.8 37569.1 41420.8 18083.0 19281.0 26259.2 29626.0 1414.1 10112.0 21478.8 16769.2 26786.4
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 4 I.   Homog.-Homosk. 121.3* 84.2* 59.2* 64.0* 61.4* 100.0* 95.1* 79.5* 75.1* 86.9* 78.8* 78.0* 78.4* 103.0*
II. Heterog.-Homosk. 122.5* 96.6* 59.9* 64.9* 62.5* 101.8* 97.0* 81.1* 76.7* 88.4* 80.6* 79.8* 80.4* 105.3*
III. Homog.-Heterosk. 140.4* 131.1* 125.5* 128.4* 128.3* 135.4* 134.7* 131.5* 130.9* 141.8* 135.1* 133.8* 142.7* 139.0*
IV. Heterog.-Heterosk. 139.6* 142.1* 125.7* 128.3* 128.2* 135.4* 134.9* 131.4* 130.9* 142.1* 135.3* 134.1* 143.4* 138.8*

Average (V-SEB)/SEB -0.347 -0.454 -0.557 -0.538 -0.545 -0.420 -0.435 -0.486 -0.500 -0.447 -0.481 -0.486 -0.466 -0.398
F-stat (V = SEB) 10121.3 16728.4 43560.5 35892.8 38878.5 14475.8 15970.7 22559.7 25166.4 17014.9 21910.2 22396.7 21177.8 13108.1
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.

Table 5: Simulated Average Variance (x 1000) of the Estimated Treatment Effect on the Treated (TOT)
Trimming Results in the Normal-Normal Model (Sample size 100)



Sample Size Setting
Pair 

match
Blocking k-NN

Kernel 
macth 
(Epa)

Kernel 
macth 

(Gauss)

LLR 
macth 
(Epa)

LLR 
macth 

(Gauss)

Ridge 
macth 
(Epa)

Ridge 
macth 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

A. Simulated Root 100 I.   Homog.-Homosk. 3.4 19.2* 44.8* 37.4* 43.5* 63.0* 4.3* 7.5* 12.6* 2.8 1.9 2.5 2.0 2.0
    Mean Squared Bias II.  Heterog.-Homosk. 2.7 30.5* 60.1* 47.1* 54.9* 22.9* 2.9 10.7* 17.3* 1.9 2.7 3.9 2.7 16.5*
    (x 1000) III. Homog.-Heterosk. 4.4 19.1* 43.5* 35.9* 46.6* 366.9* 20.7* 9.6* 11.9* 3.8 3.7 4.0 4.5 4.3

IV. Heterog.-Heterosk. 4.8 30.9* 59.2* 46.8* 61.5* 330.8* 17.1* 13.6* 17.2* 2.3 3.2 4.5 4.2 13.0*

All 3.9 25.6* 52.5* 42.1* 52.1* 249.3* 13.7* 10.6* 15.0* 2.8 3.0 3.8* 3.5 10.8*
F-stat (no bias) 34.8 2126.2 9872.6 6125.0 9339.9 69084.1 421.8 337.2 760.9 20.5 26.2 44.9 34.6 405.2
[p-value] [0.071] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.667] [0.343] [0.006] [0.075] [0.000]

500 I.   Homog.-Homosk. 4.0 5.4* 34.7* 26.7* 29.3* 3.5 3.4 3.1 3.0 3.0 3.4 3.3 3.5 3.4
II.  Heterog.-Homosk. 2.8 8.5* 38.6* 27.7* 30.2* 2.1 1.8 2.2 3.3 2.6 1.9 1.9 2.0 13.6*
III. Homog.-Heterosk. 4.0 6.2* 42.5* 32.5* 37.2* 6.2* 4.7 4.0 4.1 3.4 3.3 3.2 3.4 3.1
IV. Heterog.-Heterosk. 4.2 9.5* 51.6* 37.8* 43.0* 5.5* 4.4 4.2 5.4* 3.1 3.0 3.0 3.1 13.2*

All 3.8 7.6* 42.3* 31.5* 35.4* 4.6* 3.8* 3.5 4.0* 3.1 3.0 2.9 3.1 9.7*
F-stat (no bias) 33.6 191.7 5766.9 3301.7 4140.2 61.0 43.4 37.7 52.0 26.0 29.6 27.9 31.2 338.2
[p-value] [0.092] [0.000] [0.000] [0.000] [0.000] [0.000] [0.009] [0.037] [0.001] [0.354] [0.199] [0.263] [0.148] [0.000]

B. Simulated 100 I.   Homog.-Homosk. 76.8* 57.9* 48.6* 50.9* 48.8* 75.8* 56.7* 56.5* 53.6 69.3* 56.4* 55.9* 57.4* 53.6*
    Average Variance II. Heterog.-Homosk. 77.6* 60.8* 50.9* 53.2* 51.1* 69.3* 57.4* 57.5* 54.7 77.2* 57.0* 56.5* 58.1* 54.2
    (x 1000) III. Homog.-Heterosk. 130.2* 101.4* 98.9* 105.3* 99.0* 157.0* 101.9* 106.0* 98.2* 110.1* 97.6* 97.3* 100.2* 98.9*

IV. Heterog.-Heterosk. 130.0* 103.1* 99.8* 106.0* 99.7* 251.4* 101.4* 106.3* 98.7* 118.5* 97.9* 97.5* 100.5* 98.6*

Average (V-SEB)/SEB 0.406 0.093 -0.011 0.044 -0.009 0.751 0.068 0.092 0.026 0.284 0.044 0.038 0.068 0.025
F-stat (V = SEB) 418.1 40.1 36.1 46.2 33.4 746.9 28.5 46.2 8.2 256.9 10.1 7.8 21.3 7.3
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

500 I.   Homog.-Homosk. 15.3* 11.0 10.2* 10.0* 10.0* 10.9 10.8 10.8 10.7 13.0* 10.9 10.9 10.9 10.2*
II. Heterog.-Homosk. 15.3* 10.9 10.4* 10.2* 10.2* 10.8 10.7 10.8 10.6 13.9* 10.8 10.8 10.8 10.2*
III. Homog.-Heterosk. 25.7* 19.1 19.6* 19.0 19.0 19.2* 18.7 18.8 18.6 20.5* 18.6 18.6 18.7 18.6
IV. Heterog.-Heterosk. 25.0* 18.6 19.4* 18.5 18.5 18.6 18.2 18.2 18.1* 21.2* 18.2 18.2 18.2 18.1

Average (V-SEB)/SEB 0.383 0.009 -0.004 -0.031 -0.034 0.007 -0.011 -0.008 -0.020 0.174 -0.008 -0.010 -0.006 -0.039
F-stat (V = SEB) 77.3 1.6 5.5 5.4 6.0 1.7 1.6 1.4 1.8 25.7 1.4 1.4 1.4 3.3
[p-value] [0.000] [0.028] [0.000] [0.000] [0.000] [0.017] [0.040] [0.073] [0.007] [0.000] [0.085] [0.072] [0.078] [0.000]

Table A.1: Bias and Variance of the Estimated Treatment Effect on the Treated (ATE)
Normal-Cauchy Model

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.



Misspec. TypeSetting
Pair 

match
Blocking k-NN

Kernel 
macth 
(Epa)

Kernel 
macth 

(Gauss)

LLR 
macth 
(Epa)

LLR 
macth 

(Gauss)

Ridge 
macth 
(Epa)

Ridge 
macth 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

A. Simulated Root Xs I.   Homog.-Homosk. 122.9* 120.0* 143.6* 141.8* 144.1* 111.5* 120.8* 126.0* 128.9* 121.6* 122.8* 123.2* 122.4* 124.5*
    Mean Squared Bias II.  Heterog.-Homosk. 185.1* 182.1* 215.1* 211.3* 215.2* 180.0* 183.1* 189.6* 193.5* 183.0* 185.0* 185.5* 183.6* 186.6*
    (x 1000) III. Homog.-Heterosk. 123.6* 121.5* 142.9* 140.7* 145.1* 265.7* 117.2* 127.6* 129.4* 121.8* 123.5* 123.8* 123.2* 125.1*

IV. Heterog.-Heterosk. 184.2* 181.5* 211.8* 208.6* 214.5* 220.5* 177.7* 190.1* 192.1* 181.9* 184.0* 184.6* 183.3* 186.3*

All 157.0* 154.3* 181.8* 178.9* 183.1* 202.5* 152.8* 161.4* 164.1* 155.1* 156.8* 157.3* 156.1* 158.6*
F-stat (no bias) 61775 78783 117000 112000 120000 78669 78860 85739 92318 76675 84121 84760 81267 85422
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Dist of u. I.   Homog.-Homosk. 3.6 19.3* 45.3* 38.2* 44.3* 67.9* 5.3* 7.3* 12.6* 36.1* 2.5 2.3 2.1 1.9
II.  Heterog.-Homosk. 3.0 31.2* 61.2* 48.6* 56.2* 27.5* 4.5* 11.6* 17.3* 46.0* 4.4 4.6* 2.1 16.9*
III. Homog.-Heterosk. 4.5 19.3* 43.7* 38.4* 48.1* 355.2* 25.7* 11.3* 12.3* 34.9* 6.1* 5.2 4.3 4.2
IV. Heterog.-Heterosk. 5.1 31.6* 60.1* 50.5* 63.7* 321.2* 21.9* 16.7* 17.9* 47.0* 6.1* 6.8* 5.5 13.4*

All 4.1 26.1* 53.2* 44.3* 53.6* 242.2* 17.3* 12.2* 15.2* 41.4* 5.0* 5.0* 3.8 11.0*
F-stat (no bias) 38.5 2187.6 10191.9 6682.6 9863.5 67751.5 653.5 426.4 777.2 2475.9 63.1 68.4 36.5 422.9
[p-value] [0.031] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.049] [0.000]

B. Simulated Xs I.   Homog.-Homosk. 66.5 49.6* 45.5* 45.7* 44.8* 57.4* 49.4* 49.2* 47.8* 52.9* 48.5* 48.4* 49.6* 48.1*
    Average Variance II. Heterog.-Homosk. 67.8 51.9* 47.0* 47.3* 46.3* 54.0* 50.8* 50.4* 48.9* 56.5* 49.4* 49.3* 50.6* 49.2*
    (x 1000) III. Homog.-Heterosk. 163.7* 123.9* 123.5* 128.8* 122.0* 184.3* 127.5* 130.8* 123.5* 125.8* 121.6* 121.5* 125.0* 125.5*

IV. Heterog.-Heterosk. 165.7* 126.5* 124.0* 129.5* 122.2* 269.5* 127.5* 131.6* 124.1* 129.4* 122.2* 122.1* 125.6* 125.8*

Average (V-SEB)/SEB 0.258 -0.046 -0.085 -0.059 -0.098 0.461 -0.040 -0.025 -0.070 -0.006 -0.074 -0.076 -0.050 -0.059
F-stat (V = SEB) 299.5 352.3 602.7 614.4 647.6 804.9 391.2 422.2 462.3 228.9 418.0 423.2 372.3 445.4
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Dist of u. I.   Homog.-Homosk. 76.8* 58.4* 48.4* 50.5* 48.6* 75.4* 57.1* 56.4* 53.8 93.0* 63.5* 58.7* 60.4* 53.4*
II. Heterog.-Homosk. 77.4* 61.4* 50.5* 52.8* 50.9* 69.7* 57.9* 57.4* 54.8 111.2* 64.5* 59.3* 61.3* 54.1
III. Homog.-Heterosk. 130.2* 102.0* 99.0* 105.2* 98.9* 153.7* 103.7* 106.1* 98.5* 153.4* 107.2* 101.0* 104.3* 98.8*
IV. Heterog.-Heterosk. 130.0* 103.8* 99.7* 106.3* 99.8* 243.8* 102.7* 106.7* 98.9* 164.0* 107.7* 101.4* 104.8* 98.7*

Average (V-SEB)/SEB 0.405 0.102 -0.013 0.041 -0.011 0.722 0.081 0.093 0.028 0.767 0.161 0.083 0.118 0.024
F-stat (V = SEB) 416.2 47.1 38.6 49.6 35.7 732.2 38.5 47.3 8.8 858.5 104.4 32.6 59.0 7.4
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Table A.2: Bias and Variance of the Estimated Treatment Effect on the Treated (ATE) under Misspecification
Misspecification of the Propensity Score in the Normal-Cauchy Model (sample size 100)

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.



N Setting
Pair 

match
Blocking k-NN

Kernel 
macth 
(Epa)

Kernel 
macth 

(Gauss)

LLR 
macth 
(Epa)

LLR 
macth 

(Gauss)

Ridge 
macth 
(Epa)

Ridge 
macth 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

A. Simulated Root 100 I.   Homog.-Homosk. 9.1* 35.0* 87.1* 67.3* 77.1* 62.3* 10.7* 16.0* 21.9* 15.3* 8.9* 9.7* 3.3 2.5
    Mean Squared Bias II.  Heterog.-Homosk. 11.3* 49.3* 114.8* 80.5* 90.8* 22.6* 6.4* 22.6* 28.6* 18.8* 14.2* 15.4* 8.8* 28.6*
    (x 1000) III. Homog.-Heterosk. 8.6* 33.9* 87.9* 72.0* 86.3* 404.1* 31.6* 26.3* 23.7* 14.6* 12.0* 12.1* 4.6 4.6

IV. Heterog.-Heterosk. 12.3* 50.4* 119.6* 94.3* 112.0* 424.5* 26.5* 34.9* 29.7* 22.5* 14.3* 14.3* 8.1* 26.1*

All 10.4* 42.9* 103.4* 79.2* 92.4* 294.9* 21.5* 25.9* 26.2* 18.1* 12.5* 13.0* 6.6* 19.6*
F-stat (no bias) 221 4511 35319 18137 25567 133000 969 1626 2009 447 384 466 117 1221
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

500 I.   Homog.-Homosk. 3.4 10.9* 65.0* 43.2* 48.1* 4.3 4.1 4.3 5.5* 4.4 3.2 3.8 3.1 2.6
II.  Heterog.-Homosk. 3.3 12.4* 73.0* 41.0* 45.4* 4.2 3.7 4.5 5.4* 6.4* 3.2 4.3 3.0 26.0*
III. Homog.-Heterosk. 2.8 11.4* 82.1* 58.5* 66.7* 10.6* 9.7* 8.8* 9.8* 4.3 3.1 4.1 2.7 2.6
IV. Heterog.-Heterosk. 5.2 15.3* 93.4* 60.5* 69.1* 7.9* 7.3* 6.9* 7.6* 8.2 4.7 6.3* 2.0 24.9*

All 3.8 12.6* 79.1* 51.5* 58.3* 7.3* 6.6* 6.4* 7.3* 6.0* 3.6 4.7* 2.7 18.1*
F-stat (no bias) 26.4 395.1 17972.6 7399.3 9487.5 123.8 110.1 104.3 142.0 49.4 28.9 56.1 20.1 1091.7
[p-value] [0.332] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.002] [0.222] [0.000] [0.690] [0.000]

B. Simulated 100 I.   Homog.-Homosk. 95.9* 76.2* 49.3* 55.7* 52.9* 83.6* 68.2* 66.1* 62.2* 120.7* 76.5* 69.6* 73.6* 59.5*
    Average Variance II. Heterog.-Homosk. 96.3* 83.2* 53.2* 60.3* 58.1* 81.7* 70.8* 67.9* 64.5* 151.7* 77.5* 70.0* 74.6* 60.3*
    (x 1000) III. Homog.-Heterosk. 148.3* 119.3* 107.5* 118.3* 109.2* 117.6* 114.2* 119.8* 108.4* 172.3* 118.6* 111.5* 118.2* 109.1*

IV. Heterog.-Heterosk. 150.0* 127.2* 109.6* 119.4* 110.2* 271.8* 116.3* 120.5* 109.2* 187.2* 118.8* 112.1* 119.3* 109.1*

Average (V-SEB)/SEB -0.169 -0.317 -0.468 -0.410 -0.449 -0.085 -0.377 -0.370 -0.420 0.053 -0.340 -0.386 -0.350 -0.434
F-stat (V = SEB) 2203.2 4026.1 14828.2 10162.5 11744.5 4744.6 6446.5 7039.7 8573.4 639.4 4620.2 6593.0 5160.8 9592.9
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

500 I.   Homog.-Homosk. 22.3* 15.3* 11.1* 11.8* 11.5* 14.2* 13.5* 13.5* 13.1* 29.2* 18.3* 15.2* 15.8* 11.5*
II. Heterog.-Homosk. 21.6* 16.0* 11.4* 12.3* 12.0* 14.9* 14.0* 13.9* 13.4* 38.9* 17.8* 15.0* 15.7* 11.6*
III. Homog.-Heterosk. 32.4* 23.7* 22.4* 21.3* 21.4* 23.0* 21.7* 21.7* 21.3* 40.0* 25.8* 23.1* 23.8* 20.8*
IV. Heterog.-Heterosk. 31.7* 23.9* 22.0* 20.9* 21.0* 22.3* 21.2* 21.1* 20.6* 41.8* 25.6* 22.4* 23.3* 20.1*

Average (V-SEB)/SEB -0.090 -0.335 -0.443 -0.444 -0.449 -0.373 -0.407 -0.407 -0.424 0.193 -0.271 -0.363 -0.339 -0.464
F-stat (V = SEB) 253.2 874.9 2323.6 1896.6 2033.9 1118.3 1356.5 1373.1 1549.7 86.1 457.4 1003.7 832.0 2160.5
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Table A.3: Bias and Variance of the Estimated Treatment Effect on the Treated (ATE)
Normal-Normal Model



Trimming Setting
Pair 

match
Blocking k-NN

Kernel 
macth 
(Epa)

Kernel 
macth 

(Gauss)

LLR 
macth 
(Epa)

LLR 
macth 

(Gauss)

Ridge 
macth 
(Epa)

Ridge 
macth 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

Rule 1 I.   Homog.-Homosk. 5.7* 28.1* 51.7* 43.5* 49.7* 75.3* 6.1* 12.7* 16.5* 71.2* 4.4 3.8 3.3 2.9
II.  Heterog.-Homosk. 23.5* 30.6* 64.1* 49.4* 56.1* 37.0* 19.8* 24.2* 25.2* 111.1* 24.5* 22.2* 27.2* 35.5*
III. Homog.-Heterosk. 3.8 29.3* 47.9* 39.0* 49.2* 374.2* 22.6* 13.7* 13.8* 69.8* 8.5* 5.7 5.0 4.8
IV. Heterog.-Heterosk. 18.4* 32.6* 62.4* 49.0* 61.8* 379.8* 13.4* 22.1* 20.1* 109.4* 19.4* 16.6* 21.9* 30.2*

All 15.3* 30.2* 57.0* 45.4* 54.5* 269.9* 16.7* 18.9* 19.4* 92.6* 16.3* 14.3* 17.7* 23.5*
F-stat (no bias) 508.0 2230.7 9461.0 5589.7 8332.2 97336.0 686.3 922.0 1100.6 12451.3 711.3 575.3 863.1 1594.7
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 2 I.   Homog.-Homosk. 18.9* 112.5* 97.6* 78.2* 86.6* 61.0* 15.7* 23.9* 29.3* 85.8* 55.9* 41.8* 2.9 2.6
II.  Heterog.-Homosk. 21.6* 173.4* 126.3* 92.5* 101.2* 26.1* 12.4* 29.2* 35.2* 134.7* 78.8* 57.2* 20.9* 31.4*
III. Homog.-Heterosk. 15.2* 113.7* 95.8* 80.7* 93.9* 399.0* 37.4* 32.4* 28.5* 85.5* 52.9* 38.8* 4.3 4.3
IV. Heterog.-Heterosk. 24.6* 175.8* 132.3* 108.4* 124.7* 416.0* 35.1* 45.0* 39.2* 136.5* 80.2* 58.6* 17.9* 26.3*

All 20.4* 147.1* 114.2* 90.8* 102.6* 290.1* 27.5* 33.5* 33.3* 113.4* 68.1* 49.9* 14.0* 20.6*
F-stat (no bias) 689.5 47809.4 41096.3 22584.5 29204.9 124000 1469.6 2550.6 2945.1 32887.1 14341.6 7340.5 517.5 1253.8
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 3 I.   Homog.-Homosk. 5.2* 23.4* 47.1* 39.9* 45.5* 85.6* 6.7* 11.8* 15.4* 17.8* 5.9* 2.7 3.7 3.2
II.  Heterog.-Homosk. 24.5* 23.0* 59.4* 46.9* 53.3* 46.4* 20.4* 26.1* 26.8* 46.1* 29.2* 26.0* 25.1* 34.0*
III. Homog.-Heterosk. 4.9 25.4* 44.1* 36.0* 46.0* 382.4* 25.5* 12.6* 12.8* 16.3* 11.1* 7.1* 6.2* 5.5
IV. Heterog.-Heterosk. 18.0* 25.6* 57.2* 44.9* 56.9* 397.4* 16.1* 21.6* 20.0* 40.5* 23.6* 19.9* 18.6* 27.5*

All 15.6* 24.4* 52.3* 42.1* 50.7* 280.0* 18.5* 19.0* 19.5* 33.0* 19.8* 16.8* 16.0* 22.1*
F-stat (no bias) 514.0 1395.2 7450.2 4479.7 6758.0 105000 765.5 896.2 1061.9 1810.1 995.5 755.6 680.0 1341.8
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 4 I.   Homog.-Homosk. 5.1* 36.3* 57.3* 47.7* 54.4* 62.2* 6.3* 12.8* 16.4* 4.0 2.5 3.8 2.6 2.6
II.  Heterog.-Homosk. 25.2* 43.3* 72.4* 56.4* 64.1* 24.4* 21.7* 27.1* 28.6* 29.6* 25.4* 24.9* 26.7* 34.8*
III. Homog.-Heterosk. 3.5 37.7* 53.8* 43.7* 55.3* 381.7* 22.7* 15.3* 13.7* 6.0 4.7 4.0 5.1 4.8
IV. Heterog.-Heterosk. 20.0* 46.0* 71.8* 55.7* 71.3* 388.9* 15.6* 26.4* 23.4* 24.6* 20.1* 19.5* 21.5* 29.7*

All 16.4* 41.0* 64.4* 51.2* 61.7* 274.5* 17.8* 21.4* 21.4* 19.6* 16.4* 16.1* 17.4* 23.0*
F-stat (no bias) 613.6 4394.9 12593.3 7379.7 11116.8 115000 835.3 1207.1 1394.1 891.8 802.5 781.6 877.8 1599.7
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.
Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.

Table A.4: Simulated Root Mean Squared Bias (x 1000) of the Estimated Treatment Effect on the Treated (ATE)
Trimming Results in the Normal-Normal Model (Sample size 100)



Trimming Setting
Pair 

match
Blocking k-NN

Kernel 
macth 
(Epa)

Kernel 
macth 

(Gauss)

LLR 
macth 
(Epa)

LLR 
macth 

(Gauss)

Ridge 
macth 
(Epa)

Ridge 
macth 

(Gauss)
IPW1 IPW2 IPW3

Double 
robust

Control 
function

Rule 1 I.   Homog.-Homosk. 92.3* 73.1* 58.8* 62.8* 59.5* 89.0* 69.3* 69.2* 65.3* 108.8* 73.9* 70.5* 71.0* 65.8*
II. Heterog.-Homosk. 93.2* 78.2* 61.5* 65.8* 62.4* 89.0* 71.2* 71.3* 67.0* 131.5* 76.2* 71.9* 72.1* 66.9*
III. Homog.-Heterosk. 159.2* 127.2* 125.2* 138.6* 124.6* 144.3* 126.5* 138.1* 122.4* 173.0* 124.7* 121.7* 126.3* 125.0*
IV. Heterog.-Heterosk. 160.6* 132.5* 126.3* 139.7* 125.3* 296.9* 126.1* 138.5* 122.7* 199.1* 125.7* 122.2* 126.5* 124.7*

Average (V-SEB)/SEB -0.150 -0.309 -0.383 -0.326 -0.383 0.020 -0.341 -0.304 -0.369 0.016 -0.327 -0.351 -0.336 -0.362
F-stat (V = SEB) 2314.2 4645.6 8800.8 7041.2 8420.6 3544.6 5783.1 5571.9 6931.8 919.4 4739.7 5695.0 5453.2 6705.2
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 2 I.   Homog.-Homosk. 116.0* 78.2* 51.0* 57.9* 56.1* 95.8* 76.8* 71.3* 67.7* 67.0* 58.6* 62.4* 72.9* 64.7*
II. Heterog.-Homosk. 117.2* 94.9* 55.4* 63.6* 62.7* 96.2* 82.3* 74.4* 71.2* 79.4* 60.2* 63.7* 74.7* 66.2*
III. Homog.-Heterosk. 179.8* 122.2* 114.1* 125.8* 117.8* 124.3* 128.6* 131.4* 120.7* 109.8* 110.4* 112.6* 126.8* 122.2*
IV. Heterog.-Heterosk. 180.2* 137.3* 114.7* 126.1* 118.4* 283.0* 131.8* 131.0* 120.2* 118.7* 110.2* 111.9* 126.5* 121.5*

Average (V-SEB)/SEB -0.007 -0.271 -0.444 -0.379 -0.410 -0.010 -0.298 -0.316 -0.364 -0.354 -0.426 -0.409 -0.326 -0.375
F-stat (V = SEB) 879.0 3293.2 13187.5 8771.6 9335.4 2797.2 3800.4 5115.2 6013.1 7814.3 11278.8 8934.6 5173.4 6987.5
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 3 I.   Homog.-Homosk. 94.4* 74.8* 62.8* 67.6* 63.3* 93.7* 72.6* 73.4* 68.6* 101.0* 75.9* 73.2* 74.2* 70.0*
II. Heterog.-Homosk. 96.2* 79.9* 66.3* 71.2* 66.6* 100.2* 74.6* 75.9* 70.7* 115.1* 78.0* 75.0* 75.8* 71.5*
III. Homog.-Heterosk. 170.6* 135.4* 134.4* 150.4* 134.1* 143.2* 137.0* 150.6* 132.6* 157.2* 132.9* 131.3* 136.1* 134.2*
IV. Heterog.-Heterosk. 172.8* 140.8* 136.3* 152.2* 135.7* 300.6* 137.6* 151.6* 133.7* 173.1* 134.0* 132.1* 137.3* 134.5*

Average (V-SEB)/SEB -0.105 -0.278 -0.337 -0.270 -0.337 0.055 -0.295 -0.249 -0.323 -0.083 -0.296 -0.310 -0.292 -0.316
F-stat (V = SEB) 2043.0 4214.1 7047.7 5454.9 6869.8 2835.0 4811.6 4449.4 5771.7 1315.1 4129.2 4817.5 4555.0 5394.8
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rule 4 I.   Homog.-Homosk. 87.3* 68.2* 55.7* 59.4* 56.1* 80.5* 65.8* 66.1* 62.2* 77.8* 66.4* 65.4* 67.4* 63.3*
II. Heterog.-Homosk. 88.2* 73.9* 58.3* 62.3* 59.1* 78.1* 67.5* 67.8* 63.8* 87.1* 68.0* 66.6* 68.4* 64.5*
III. Homog.-Heterosk. 154.1* 120.9* 121.3* 134.4* 120.7* 125.2* 121.0* 133.9* 118.5* 129.2* 117.4* 116.8* 121.6* 120.2*
IV. Heterog.-Heterosk. 154.4* 125.8* 121.1* 133.7* 120.2* 277.1* 120.8* 133.1* 117.8* 136.3* 117.3* 116.4* 121.4* 119.9*

Average (V-SEB)/SEB -0.188 -0.348 -0.411 -0.355 -0.410 -0.079 -0.372 -0.332 -0.395 -0.277 -0.381 -0.388 -0.366 -0.386
F-stat (V = SEB) 2745.3 5673.3 10211.1 8290.0 9902.3 4888.3 6796.4 6447.1 8003.3 3594.1 6781.5 7165.9 6439.9 7546.3
[p-value] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Statistics (RMSB, AV and SEB): We summarize results by showing simulated root mean square bias (RMSB) and the average variance (AV) for each setting. For a given setting, RMSB=sqrt{(1/6)(b1+...+b6)} and
the AV=(1/6)(v1+…+v6) where bi (i=1,…,6) is the square of the bias and vi (i=1,…,6) is the variance of one of the six combinations of the two curves and the three designs. “All” is the RMSB across all 24
contexts. Average (V-SEB)/SEB is the average percentage difference between the variance and the semiparametric efficiency bound (SEB). See section II.E and Appendix II. Stars, tests and p-values: We present
two F-tests and their p-values: (i) H0:bias=0, (ii) H0: V=SEB (see section IV for details). One star means that we reject the null at the 1%.

NOTES: Replications: 10,000 for N=100 and 2000 for N=500. Estimators: See sections II.B and II.C. The numbers of neighbors in k-NN and the bandwidth of kernel-based matching were selected using leave-
one-out cross validation (see section II.D). Models: Normal-Cauchy uses a treatment equation with a Cauchy distributed error term. Normal-Normal has an error term which is standard Normal. (see section III and
section IV). Settings: Simulations were done for 24 different contexts which combine two outcome curves, three treatment designs, and four settings (homogeneous treatment - homoskedastic outcome error,
homogenous-heteroskedastic, etc.) See section III and section IV.

Trimming Results in the Normal-Normal Model (Sample size 100)
Table A.5: Simulated Average Variance (x 1000) of the Estimated Treatment Effect on the Treated (ATE)



Setting Design Curve CRLB SEB CRLB SEB CRLB SEB CRLB SEB CRLB SEB CRLB SEB

I A 1 4.70 4.79 5.32 5.58 4.49 6.37 4.65 8.73 5.81 24.07 7.56 44.14
A 2 4.51 4.79 5.39 5.58 4.28 6.37 4.51 8.73 5.61 24.07 9.60 44.14
B 1 5.47 5.70 6.29 6.80 4.54 6.98 4.68 9.45 5.71 9.85 7.44 17.63
B 2 5.56 5.70 6.75 6.80 4.27 6.98 4.43 9.45 6.34 9.85 9.82 17.63
C 1 5.37 5.70 6.05 6.39 4.41 6.98 4.57 9.34 5.60 9.85 6.78 10.02
C 2 4.80 5.70 5.24 6.39 4.19 6.98 4.37 9.34 4.79 9.85 6.21 10.02

II A 1 4.66 4.81 5.39 5.61 4.58 6.40 4.77 8.79 6.00 24.11 7.93 44.20
A 2 4.55 4.80 5.44 5.59 4.24 6.38 4.50 8.76 5.68 24.09 9.65 44.19
B 1 5.50 5.71 6.34 6.82 4.47 7.01 4.71 9.48 5.69 9.88 7.24 17.66
B 2 5.55 5.70 6.74 6.81 4.44 6.99 4.68 9.47 6.37 9.87 9.82 17.66
C 1 5.46 5.71 6.14 6.45 4.39 7.01 4.64 9.44 5.77 9.88 6.88 10.08
C 2 4.64 5.70 4.99 6.40 4.35 6.99 4.60 9.38 4.57 9.86 5.87 10.05

III A 1 8.48 8.79 9.49 10.14 8.85 10.37 11.81 13.91 9.42 28.07 11.08 49.40
A 2 8.70 8.79 9.75 10.14 8.30 10.37 10.41 13.91 10.26 28.07 13.30 49.40
B 1 8.79 9.70 9.75 11.13 8.75 10.98 11.67 14.17 8.72 13.85 10.19 22.32
B 2 9.22 9.70 10.30 11.13 8.31 10.98 10.37 14.17 9.87 13.85 12.12 22.32
C 1 9.50 9.70 11.02 11.62 8.57 10.98 11.48 15.27 9.91 13.85 11.60 15.49
C 2 9.17 9.70 10.02 11.62 8.23 10.98 10.33 15.27 9.62 13.85 11.34 15.49

IV A 1 8.42 8.81 9.44 10.17 8.90 10.40 12.01 13.96 9.46 28.11 11.37 49.46
A 2 8.51 8.80 9.43 10.15 8.42 10.38 10.67 13.94 10.07 28.09 12.93 49.45
B 1 8.77 9.71 9.72 11.14 8.90 11.01 12.07 14.20 8.90 13.88 10.39 22.36
B 2 9.50 9.70 10.56 11.14 8.49 10.99 10.77 14.19 10.01 13.87 12.33 22.36
C 1 9.51 9.71 11.22 11.67 8.82 11.01 11.88 15.37 9.88 13.88 11.72 15.55
C 2 9.32 9.70 10.26 11.62 8.25 10.99 10.43 15.31 9.87 13.86 11.68 15.52

NOTES: See section II.E and Appendix II for details on the computation of the SEB. The CRLB was computed assuming full knowledge of the parametric model.

Table A.6. Cramer-Rao and Semiparametric Efficiency Bounds

ATE TOT

Cauchy

ATE TOT

Cauchy Misspecified Normal

ATE TOT
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