Publications
Journal Articles  ♦  Conference Papers  ♦  Popular Press  ♦  Doctoral Thesis


Refereed Journal Articles

2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013


    2022
  1. Lattanzi, A., Tavanashad, V., Subramaniam, S., Capecelatro, J. (2022). Fluid-mediated sources of granular temperature at finite Reynolds numbers. Journal of Fluid Mechanics. 942, A7. DOI.
  2. Tan, S., Zhang, J., Maki, K., Fidkowski, K.J., Capecelatro, J. (2022) Beyond well-mixed: a simple probabilistic model of airborne disease transmission in indoor spaces. Indoor Air. 32(3), 1-12. DOI.
  3. Capecelatro, J. (2022) Modeling high-speed gas–particle flows relevant to spacecraft landings. International Journal of Multiphase Flow. 150, 104008. DOI.
  4. Morris, S., McAtee, W., Capecelatro, J., Raghav, V. (2022) Influence of expiratory flow pulsatility on the effectiveness of a surgical mask. Journal of Exposure Science & Environmental Epidemiology. 1-9. DOI.
  5. Lo, C., Bons, J., Yao, Y., Capecelatro, J. (2022) Assessment of stochastic models for predicting particle transport and deposition in turbulent pipe flows. Journal of Aerosol Science. 162, 105954. DOI.
  6. Zhu, M., Medina, M., Nalliah, R., Kadhium, V., Bell, E., Han, T., Boehman, A., Capecelatro, J., Wooldridge, M. (2021) Experimental evaluation of aerosol mitigation strategies in large open-plan dental clinics. The Journal of the American Dental Association. 153(3). DOI.
  7. Lattanzi, A., Tavanashad, V., Subramaniam, S., Capecelatro, J., (2022) Stochastic model for the hydrodynamic force in Euler-Lagrange simulations of particle-laden flows. Physical Review Fluids. 7, 014301. DOI.
  8. Shallcross, G. S., Capecelatro, J. (2022) An explicit characteristic-based immersed boundary method for compressible flows. Journal of Computational Physics. 449, 110804. DOI.
  9. Beetham, S., Lattanzi, A., Capecelatro, J. (2022) On the thermal entrance length of moderately dense gas-particle flows. International Journal of Heat and Mass Transfer,182. DOI.



  10. 2021
  11. Zhang, J., Capecelatro, J., Maki, K. (2021) On the utility of a well-mixed model for predicting disease transmission on an urban bus. AIP Advances. 11, 085229. DOI.
  12. Yao, Y., Capecelatro, J. (2021) An accurate particle-mesh method for simulating charged particles in wall-bounded flows, Powder Technology. 387, 239-250. DOI.
  13. Monroe, K., Yao, Y., Lattanzi, A., Raghav, V., Capecelatro, J. (2021) Role of pulsatility on particle dispersion in expiratory flows, Physics of Fluids. 33, 4. DOI.
  14. Beetham, S., Fox, R.O., Capecelatro, J., (2021) Sparse identification of multiphase turbulence closures for coupled fluid-particle flows. Journal of Fluid Mechanics. 914, A11. DOI.
  15. Yao, Y., Capecelatro, J., (2021) Deagglomeration of cohesive particles by turbulence. Journal of Fluid Mechanics. 911, A10. DOI
  16. Zhang, J., Han, T., Hee Yoo, K., Capecelatro, J., Boehman, A., Maki, K. (2021) Disease transmission through expiratory aerosols on an urban bus. Physics of Fluids. 33, 1. DOI.



  17. 2020
  18. Iwashyna, T. J., Boehman, A., Capecelatro, J., Cohn, A. M., Cooke, J. M., Costa, D. K., Eakin, R. M., Prescott, H. C., Wooldridge, M. S. (2020) Variation in aerosol production across oxygen delivery devices in spontaneously breathing human subjects. medRxiv. DOI.
  19. Lattanzi, A., Tavanashad, V., Subramaniam, S., Capecelatro, J., (2020) Stochastic models for capturing dispersion in particle-laden flows. Journal of Fluid Mechanics. 903, A7. DOI
  20. Beetham, S., Capecelatro, J., (2020) Formulating turbulence closures using sparse regression with embedded form invariance. Physical Review Fluids. 5, 084611. DOI
  21. Baker, M. C., Fox, R.O., Kong, B., Capecelatro, J., Desjardins, O. (2020) Reynolds-stress modeling of cluster-induced turbulence in particle-laden vertical channel flow, Physical Review Fluids. 5, 074304. DOI
  22. Baker, M. C., Kong, B., Capecelatro, J., Desjardins, O., Fox, R.O. (2020) Direct comparison of Eulerian–Eulerian and Eulerian–Lagrangian simulations for particle-laden vertical channel flow, AIChE Journal. 67, 1-13. DOI
  23. Shallcross, G. S., Fox, R.O., Capecelatro, J., (2020) A volume-filtered description of compressible particle-laden flows. International Journal of Multiphase Flows. 122, 1-19. DOI



  24. 2019
  25. Yao, Y., Capecelatro, J., (2019) Electrohydrodynamic generation of atmospheric turbulence. Physical Review Fluids. 4, 1-19. DOI
  26. Wang, G., Fong, K. O., Coletti, F., Capecelatro, J., Richter, D. (2019) Inertial particles distribution and modification of vertical turbulent channel flow: a numerical and experimental comparison. International Journal of Multiphase Flows. 120, 1-16. DOI
  27. Kord, A., Capecelatro, J. (2019) Optimal perturbations for controlling the growth of a Rayleigh–Taylor instability. Journal of Fluid Mechanics. 876, 150-185. DOI
  28. Buchta, D. A., Shallcross, G., Capecelatro, J. (2019) Sound and turbulence modulation by particles in high-speed shear flows. Journal of Fluid Mechanics. 875, 254-285. DOI
  29. Popov, P. P., Buchta, D. A., Anderson, M. J., Massa, L., Capecelatro, J., Bodony, D. J., Freund, J. B. (2019) Learning-Assisted Early Ignition Prediction in a Complex Flow, Combustion and Flame. 206, 451-466. DOI
  30. Beetham, S., Capecelatro, J. (2019) Biomass pyrolysis in fully-developed turbulent riser flow, Renewable Energy. 140, 751-760. DOI
  31. Rao, A. A., Capecelatro, J. (2019) Coarse-grained modeling of sheared granular beds, International Journal of Multiphase Flow. 114, 258-267. DOI
  32. Guo, L., Capecelatro, J. (2019) The role of clusters on heat transfer in sedimenting gas-solid flows, International Journal of Heat and Mass Transfer. 132, 1217-1230. DOI



  33. 2018
  34. Capecelatro, J., Bodony, D. J., Freund, J. B. (2018) Adjoint-based sensitivity and ignition threshold mapping in a turbulent mixing layer, Combustion Theory and Modeling. 23, 2-35. DOI
  35. Capecelatro, J., Desjardins, O., Fox, R.O. (2018) On the transition between turbulence regimes in particle-laden channel flows, Journal of Fluid Mechanics. 845, 499-519. DOI
  36. Goyal, H., Desjardins, O., Pepiot, P., Capecelatro, J. (2018) A computational study of the effects of multiphase dynamics in catalytic upgrading of biomass pyrolysis vapor, AIChE Journal. 64, 3341-3353. DOI
  37. Yao, Y., Capecelatro, J. (2018) Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach, Physical Review Fluids. 3, 1-20. DOI
  38. Capecelatro, J. (2018) A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics, Journal of Computational Physics. 356, 174-191. DOI



  39. 2017
  40. Patel, R., Kong, B.,Capecelatro, J., Desjardins, O., Fox, R.O. (2017) Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for fluid-particle flows, AIChE Journal. 63, 5396-5412. DOI
  41. Kong, B., Feng, H. Capecelatro, J., Patel, R., Desjardins, O., Fox, R.O. (2017) Euler-Euler anisotropic Gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence, AIChE Journal. 63, 2630-2643. DOI



  42. 2016
  43. Capecelatro, J., Desjardins, O., Fox, R.O. (2016) Strongly-coupled gas-particle flows in vertical channels. Part I: Reynolds-averaged two-phase statistics, Physics of Fluids. 28, 1-22. DOI
  44. Capecelatro, J., Desjardins, O., Fox, R.O. (2016) Strongly-coupled gas-particle flows in vertical channels. Part II: Turbulence modeling, Physics of Fluids. 28, 1-22. DOI
  45. Capecelatro, J., Desjardins, O., Fox, R.O. (2016) Effect of domain size on fluid-particle statistics in homogeneous gravity-driven cluster-induced turbulence, Journal of Fluids Engineering. 138, 1-8. DOI



  46. 2015
  47. Capecelatro, J., Desjardins, O., Fox, R.O. (2015) On fluid-particle dynamics in fully-developed cluster-induced turbulence, Journal of Fluid Mechanics. 780, 578-635. DOI
  48. Capecelatro, J., Desjardins, O. (2015) Mass loading effects on turbulence modulation by particle clustering in dilute and moderately dilute channel flows, Journal of Fluids Engineering. 137, 1-8. DOI
  49. Capecelatro, J., Pepiot, P., Desjardins, O. (2015) Numerical investigation and modeling of reacting gas-solid flows in the presence of clusters, Chemical Engineering Science. 122, 403-415. DOI



  50. 2014
  51. Capecelatro, J., Desjardins, O., Fox, R.O. (2014) Numerical study of collisional particle dynamics in cluster-induced turbulence, Journal of Fluid Mechanics. 747, R2 1-13. DOI
  52. Capecelatro, J., Pepiot, P., Desjardins, O. (2014) Numerical characterization and modeling of particle clustering in wall-bounded vertical risers, Chemical Engineering Journal. 245, 295-310. DOI



  53. 2013
  54. Capecelatro, J., Desjardins, O. (2013) Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes, International Journal of Multiphase Flow. 55, 64-79. DOI
  55. Capecelatro, J., Desjardins, O. (2013) An Euler-Lagrange strategy for simulating particle-laden flows, Journal of Computational Physics. 238, 1 - 31. DOI

Conference Papers

2022 | 2020 | 2019 | 2018 | 2017 | 2016 | 2014

    2022
  1. Patel, M., Rabinovitch, J., Capecelatro, J. (2022) Eulerian-Lagrangian Simulations of Plume-Induced Sheared Granular beds under Martian Conditions, AIAA Scitech 2022 Forum. San Diego, CA. DOI
  2. Fontenot, R.L., Talbot, J., Gale, M., Mehta, R.S.,Capecelatro, J. (2022) Modeling Enhancements for Eulerian-Eulerian Two-Fluid Methods in Compressible Particle-Laden Flows with Plume-Surface Interaction Applications, AIAA Scitech 2022 Forum. San Diego, CA. DOI
  3. Khalloufi, M., Capecelatro, J. (2022) Assessment of High-Order Upwind SBP Finite Difference Operators for Compressible Turbulent Flows, AIAA Scitech 2022 Forum. San Diego, CA. DOI

  4. 2020
  5. Yao, Y., Shallcross, G., Ni, R., Kim, T., Mehta, M., Rabinovitch, J., Capecelatro, J. (2020) The dynamics of inertial particles in under-expanded jets: A numerical study, 58th AIAA Aerospace Sciences Meeting. Orlando, FL. DOI
  6. Kim, T., Ni, R., Capecelatro, J., Yao, Y., Shallcross, G., Mehta, M., Rabinovitch, J. (2020) The dynamics of inertial particles in underexpanded jets: An experimental study, 58th AIAA Aerospace Sciences Meeting. Orlando, FL. DOI

  7. 2019
  8. Agudelo, C., Vedula, R.T., Capecelatro, J., Wang, Q. (2019) Design of Experiments for Effects and Interactions During Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics. SAE Technical Paper. 37th Annual Brake Colloquium & Exhibition. No. 2019-01-2139. DOI

  9. 2018
  10. Shallcross, G., Capecelatro, J. (2018) A parametric study of particle-laden shock tubes using an Eulerian-Lagrangian framework, 56th AIAA Aerospace Sciences Meeting. Kissimmee, FL. DOI

  11. 2017
  12. Capecelatro, J., Buchta, D. (2017) Direct numerical simulation of noise suppression by water injection in high-speed flows. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX. DOI
  13. Capecelatro, J., Bodony, D. J., Freund, J. B. (2017) Adjoint-based sensitivity analysis of ignition in a turbulent reactive shear layer. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX. DOI

  14. 2016
  15. Capecelatro, J., Vishnampet, R., Bodony, D. J., Freund, J. B. (2016) Adjoint-based sensitivity analysis of localized ignition in a non-premixed hydrogen–air mixing layer. 54th AIAA Aerospace Sciences Meeting, San Diego, CA. DOI

  16. 2014
  17. Capecelatro, J., Desjardins, O., Fox, R.O. (2014) Investigating multiphase turbulence statistics of large-scale two-way coupled gravity-driven flows, Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, August 3-7, 2014, Chicago, Illinois, USA.
  18. Capecelatro, J., Desjardins, O. (2014) Turbulence modulation by particle clustering in dilute and moderately dilute channel flows, Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, August 3-7, 2014, Chicago, Illinois, USA.

Popular Press

  1. Capecelatro, J. (2020) School bus safety during the COVID-19 pandemic: 8 recommendations, The Conversation.

Doctoral Thesis

Capecelatro, J. (2014) A mesoscopic formalism for simulating particle-laden flows with applications in energy conversion processes, Cornell University. PDF