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Introduction and Motivation
Until now, all the theories that we have studied have been somewhat restricted to the ‘canonical.’

The Lagrangians of quantum electrodynamics, φ4-theory, Yukawa theory, etc. have been the starting
points for our development–while we have learned to interpret them, we have not yet developed adequate
methods to build Lagrangians for new theories.

On of the most important lessons of modern physics is that microscopic symmetries can be used
to determine the form of physical interactions. In particular, the Standard Model of particle physics,
SU(3)×SU(2)L×U(1)Y , has a form completely specified by its symmetries alone. Today, we will discuss
some of the foundational principles from which this type of theory can be built.

We have seen already that the QED Lagrangian is invariant to a wide class of transformations. Per-
haps the most striking of all is its invariance under arbitrary, position dependent phase transformations
of the field ψ. But this should have been obvious. It is not surprising that phase differences between
space-like separated points should be uncorrelated in the theory. However, a-causal regions become
causal in time; therefore, there must be some way to re-correlate the arbitrary phases between points
at future times. As you know, it is this argument of local gauge invariance in quantum electrodynamics
that requires the existence of the vector field, Aµ, the photon.

Clearly, the local U(1) symmetry of the QED Lagrangian proves to be a powerful source of insight.
Let us therefore consider promoting the concept of local gauge invariance to the highest level of physical
principle. We may ask, for example, whether or not other local symmetries are observed in nature?
What form must our Lagrangians take if they are to be manifestly gauge covariant?

In our presentation this afternoon, we will attempt to introduce the tools that must be used to deal
with gauge symmetries. We will first review the construction of quantum electrodynamics from a simply
U(1) gauge principle and then extend these arguments to arbitrary SU(n) symmetries. Because higher
gauge groups are non-abelian, some care must be observed. We will finish our presentation with an in-
troduction to the algebraic tools necessary to investigate gauge theories. The material of this discussion
can be found in chapter 15 of Peskin and Schroeder.

Geometry of Gauge Invariance
One of the most familiar Lagrangians should be that of quantum electrodynamics,

LQED = −1
4
(Fµν)2 + ψ(i 6∂ −m)ψ − eψγµψAµ.

In chapter 4, we found that this Lagrangian is not only invariant under global gauge variations
ψ → eiαψ, but to the very general, position-dependent transformation ψ → eiα(x)ψ if the vector field Aµ

transforms simultaneously by Aµ → Aµ + 1
e∂µα(x). Transformations under which the phase of quantum

fields are changed as arbitrary functions of position are called local gauge transformations. When a
Lagrangian is invariant under a local gauge transformation, we say that it is gauge covariant.

Local gauge invariance turns out to be so powerful that the entire form of the QED Lagrangian is
determined by it alone. Because quantum electrodynamics is very familiar to us, it will serve as an ideal
place to begin our investigation of the consequences local gauge invariance. Because the local gauge
transformation in QED is a scalar function eiα(x), it commutes with everything. By starting with QED,
we can gain a good deal of insight about the physical principles at work before rigorously exploring the
symmetries of non-commutative gauge transformations.

Derivation of LQED from Local U(1) Gauge Invariance
Let us consider the consequences of demanding that LQED be invariant under the local gauge trans-

formation ψ(x) → eiα(x)ψ(x) where ψ is the standard fermion field. We see that we may already include
terms like mψψ because these will be manifestly covariant under any phase transformation.

What are we to make of derivative terms? Recall that, in general, the partial derivative of any field
ψ(x) taken in the direction of the vector nµ can be defined by

nµ∂µψ = lim
ε→0

1
ε
[ψ(x + εn)− ψ(x)].
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Note, however, that this derivative cannot be used for the transformed field. Because ψ(x + εn) →
eiα(x+εn)ψ(x + εn) while ψ(x) → eiα(x), the subtraction–even in the limit of ε → 0–cannot be defined.
This is because we require that our theory accommodate an arbitrary function α(x) and any subtraction
technique will necessarily lose enormous generality.

We must therefore develop a consistent way to define what is meant to take the derivative of a field.
We can do this by introducing a scalar function, U(y, x), that compares two points in space. The scalar
function U(y, x) can be used to ‘make up’ for the ambiguity of α(x) by requiring that it transform
according to

U(y, x) → eiα(y)U(y, x)e−iα(x).

Now the subtraction between two different points can be made consistently. This is because the combined
entity U(y, x)ψ(x) transforms identically to ψ(y):

ψ(y)− ψ(x) → eiα(y)ψ(y)− eiα(y)U(y, x)ψ(x).

Therefore, we may define the covariant derivative in the limiting procedure:

nµDµψ = lim
ε→0

1
ε
[ψ(x + εn)− U(x + εn, x)ψ(x)].

To get an explicit definition of Dµ we expand U(y, x) at infinitesimally separated points.

U(x + εn, x) = 1− ieεnµAµ(x) +O(ε2).
Here we have extracted Aµ from the Taylor expansion of the comparator function. This new vector field
is called the connection. Putting this expansion into the rule for the transformation of the comparator,
we find the transformation of Aµ. Note that we have used the fact that εnµ∂µα(x) ∼ α(x + εn)− α(x).

(1− ieεnµAµ(x)) → eiα(x+εn)(1− ieεnµAµ(x))e−iα(x),

= eiεnµ∂µα(x)+iα(x)(1− ieεnµAµ)e−iα(x),

= 1 + iεnµ∂µα(x)− ieεnµAµ,

∴ Aµ(x) → Aµ(x)− 1
e
∂µα(x).

Note that the transformation properties we demanded of our Lagrangian determined the form of the
interaction field and the covariant derivative and required the existence of a non-trivial vector field Aµ .

Gauge Invariant Terms in the Lagrangian
We now have some of the basic building blocks of our Lagrangian. We may use any combination of ψ

and its covariant derivative to get locally invariant terms. Now we wish to find the kinetic term of the
interaction field. To construct this term we first derive its invariance from U(y, x). We expand U(y, x)
to O(ε3) and assume that it is a pure phase with the restriction (U(x, y))† = U(y, x), thus

U(x + εn, x) = exp[−ieεnµAµ(x +
ε

2
n) +O(ε3)].

Now we link together comparisons f the phase direction around a small square in spacetime. This
square lies in the (1,2)-plane and is defined by the vectors 1̂, 2̂ (see Fig. 15.1 in PS ) . We define U(x)
to be this quantity.

U(x) ≡ U(x, x + ε2̂)U(x + ε2̂, x + ε1̂ + ε2̂)× U(x + ε1̂ + ε2̂, x + ε1̂)U(x + ε1̂, x).
U(x) is locally invariant and by substituting in the expansion of U(x + εn, x) into U(x) we get a

locally invariant function of the interaction field.

U(x) = exp{−iεe[−A2(x +
ε

2
2̂)−A1(x +

ε

2
1̂ + ε2̂) + A2(x + ε1̂ +

ε

2
2̂) + A1(x +

ε

2
1̂)] +O(ε3)}

This reduces when it is expanded in powers of ε.

U(x) = 1− iε2e[∂1A2(x)− ∂2A1(x)] +O(ε3).
We can now see a hint of why Fµν is gauge covariant. It is also very important to note that AµAµ is

not locally invariant. Luckily however, Aµ commutes with Aµ with each other and so we do not have to
worry much about this. In the next section though we won’t assume that these vector fields commute.
This also shows that there is no mass term for the photon.
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Another way to define the field strength tensor Fµν and to show its covariance in terms of the
commutator of the covariant derivative. The commutator of the covariant derivative will be invariant in
QED.

[Dµ, Dν ]ψ(x) = [∂µ, ∂ν ]ψ + ie([∂µ, Aν ]− [∂ν , Aµ]ψ)− e2[Aµ, Aν ]ψ

[Dµ, Dν ]ψ(x) = ie(∂µAν − ∂νAµ)ψ

[Dµ, Dν ] = ieFµν

One can visualize the commutator of covariant derivatives as the comparison of comparisons across a
small square like we computed above. In reality, the arguments are identical.

Building a Lagrangian
We now have all of the ingredients that we can use to construct a general local gauge invariant

Lagrangian. The most general Lagrangian with operators of dimension 4 is:

L4 = ψ(i∂µγµ + ieAµ)ψ − 1
4
(Fµν)2 − cεαβµνFαβFµν −mψψ.

If we want a theory that is P , T invariant then we must set c to zero since it would violate these
discrete symmetries. This Lagrangian contains only two free parameters, e, and m. Higher dimensional
Lagrangians are also generally allowed. Such as:

L6 = ic1ψσµνFµνψ + c2(ψψ)2 + c3(ψγ5ψ)2 + · · · .

While allowed by gauge symmetry, these terms are irrelevant to low energy physics and can therefore
be ignored.

The Yang-Mills Lagrangian
We may generalize our work on local gauge invariance to consider theories which are invariant under

a much wider class of local symmetries. Let us consider a theory of ψ, where ψ is an n-tuple of fields
given by

ψ ≡




ψ1

...
ψn


 .

We will investigate the consequences of demanding this theory be invariant under a local SU(n) trans-
formation ψ → V (x)ψ where

V (x) = eitaαa(x).

Here, αa(x) are arbitrary, differentiable functions of x and the ta’s are the generators of sun.
It is important to note that in all but the most trivial case, the generators of the algebra do not com-

mute [ta, tb] 6= 0. In particular, as will be explained later, [ta, tb] = ifabctc where fabc are the structure
constants of the theory.

As before, we must redefine the derivative so that it is consistent with arbitrary local phase transfor-
mations. To do this, we will introduce a comparator function U(y, x) that transforms as

U(y, x) → V (y)U(y, x)V †(x)

so that U(x, y)ψ(y) transforms identically to ψ(x). Therefore, we may define the covariant derivative of
ψ in the direction of nµ by

nµDµψ(x) ≡ lim
ε→0

1
ε

[ψ(x + εn)− U(x + εn, x)ψ(x)] .

We will set U(x, x) = 1 and we may restrict U(y, x) to be a unitary matrix. Therefore, because
U(x + εn, x) ∼ O(1), we may expand U in terms of the infinitesimal generators of sun:

U(x + εn, x) = 1 + igεnµAa
µta +O(ε2)
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where g is a constant extracted for convenience. Therefore, we see that the covariant derivative is given
by

nµDµψ(x) = lim
ε→0

1
ε

[
ψ(x + εn)− (

1 + igεnµAa
µta +O(ε2)

)
ψ(x)

]
,

= lim
ε→0

1
ε

[ψ(x + εn)− ψ(x)]− 1
ε

(
igεnµAa

µta +O(ε2)
)
ψ(x),

= nµ∂µψ(x)− lim
ε→0

(
ignµAa

µta +O(ε)
)
ψ(x),

= nµ
(
∂µ − igAa

µta
)
ψ(x),

∴ Dµ = ∂µ − igAa
µta.

It is clear that the covariant derivative requires a vector field Aa
µ for each of the generators ta.

Let us compute how the gauge transformation acts on Aa
µ. By a direct application of the definition

of the transformation of U and our expansion of U(x + εn, x) near ε → 0, we see that

1 + igεnµAa
µta → V (x + εn)

(
1 + igεnµAa

µta
)
V †(x),

= V (x + εn)V †(x) + V (x + εn)igεnµAa
µtaV †(x),

=
[(

1 + εnµ∂µ +O(ε2)
)
V (x)

]
V †(x) +

[(
1 + εnµ∂µ +O(ε2)

)
V (x)

]
igεnµAa

µtaV †(x),

= 1 + εnµ (∂µV (x))V †(x) + V (x)igεnµAa
µtaV †(x) +O(ε2),

= 1 + V (x)εnµ
(−∂µV †(x)

)
+ V (x)igεnµAa

µtaV †(x) +O(ε2),

= 1 + V (x)
(
igεnµAa

µta − εnµ∂µ

)
V †(x) +O(ε2),

∴ Aa
µta → V (x)

(
Aa

µta +
i

g
∂µ

)
V †(x).

For infinitesimal transformations, we can expand V (x) in a power series of the functions αa(x). Note
that we should change our summation index a on two of the sums below to avoid ambiguity. To first
order in α, we see

Aa
µta → V (x)

(
Aa

µta +
i

g
∂µ

)
V †(x),

= (1 + iαa(x)ta)
(

Ab
µtb +

i

g
∂µ

)
(1− iαc(x)tc) ,

= Aa
µta + i

(
αa(x)taAb

µtb −Ab
µtbα

a(x)ta
)

+
1
g
∂µαa(x)ta,

= Aa
µta +

1
g
∂µαa(x)ta + i

[
αata, Ab

µtb
]
,

∴ Aa
µta → Aa

µta +
1
g
∂µαa(x)ta + fabcA

b
µαc(x).

As our work before showed, we can build more general gauge-covariant terms into our Lagrangian
using the covariant derivative. As before, we find that the commutator of the covariant derivative is
itself not a differential operator bet merely a multiplicative matrix acting on ψ. This implies that the
commutator of the covariant derivative will transform by

[Dµ, Dν ]ψ(x) → V (x) [Dµ, Dν ] ψ(x).

Let us now compute this invariant matrix directly.

[Dµ, Dν ]a =
(
∂µ − igAa

µta
) (

∂ν − igAb
νtb

)− (
∂ν − igAb

νtb
) (

∂µ − igAa
µta

)
,

= [∂µ, ∂ν ]− ig (∂µAa
νta + Aa

νta∂µ) + ig
(
∂νAa

µta + Aa
µta∂ν

)
+ (−ig)2

(
Aa

µtaAb
νtb −Ab

νtbA
a
µta

)
,

= −ig (∂µAa
νta) + ig

(
∂νAa

µta
)

+ (−ig)2
[
Aa

µta, Ab
νtb

]
,

= −ig
(
∂µAa

ν − ∂νAa
µ − ig [tb, tc] Ab

µAc
ν

)
ta,

= −ig
(
∂µAa

ν − ∂νAa
µ + gfabcA

b
µAc

ν

)
ta,

∴ [Dµ, Dν ]a ≡ −igF a
µνta, with F a

µν ≡ ∂µAa
ν − ∂νAa

µ + gfabcA
b
µAc

ν .

The transformation law for the commutator of the covariant derivative implies that

F a
µνta → V (x)F a

µνtaV †(x).
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Therefore, the infinitesimal transformation is simply

F a
µνta → F a

µνta + i
[
αata, F b

µνtb
]
,

= F a
µνta + fabcα

bF c
µν .

It is important to note that the field strength tensors F a
µν are themselves not gauge invariant quan-

tities because they transform nontrivially. However, we may easily form gauge-invariant quantities by
combining all three of the field strength tensors. For example,

L = −1
2
Tr

[(
F a

µνta
)2

]
= −1

4
(
F a

µν

)2

is a gauge-invariant kinetic energy term for Aa
µ.

We now know how to make a large number of gauge invariant Lagrangians. In particular, to make an
‘old’ Lagrangian locally gauge invariant, we may simply promote the derivative ∂µ to the covariant de-
rivative Dµ and add a kinetic term for the Aa

µ’s. For example, we may promote our standard Lagrangian
of quantum electrodynamics to one which is locally invariant under a SU(n) gauge symmetry by simply
making the transformation,

LQED = −1
4

(Fµν)2 + ψ (i 6D −m)ψ

→LY M = −1
4

(
F a

µν

)2 + ψ (i 6D −m) ψ.

Basic Facts About Lie Algebras
A Lie group is a group with a smooth finite-dimensional manifold structure. We usually distinguish

between real and complex Lie groups, which have the structure of a real (resp. complex) manifold.
Associated to any Lie group G is its Lie algebra G, defined to be the tangent space of G at the identity.

If we think of G as a group of linear transformations on a vector space, G is the space of infinitesimal
transformations associated to G. On the other hand, if we parametrize elements in a neighborhood of
the identity of G in terms of arcs passing through the identity, G consists of the derivatives of these
so-called 1-parameter subgroups at the identity. In symbols,

G =
{

d

dt
g(t)

∣∣∣∣
t=0

; g(t) is a smooth curve through the identity in G

}

Conversely, we have a smooth map from G to G given by the exponential map. If G and G are written
in terms of n× n matrices, this map is concretely defined by the power series

exp(M) = 1 + M +
M2

2!
+ · · · .

On a purely algebraic level, we can also speak of Lie algebras just as finite dimensional vector spaces
(over R or C) equipped with a commutator [, ]. This bracket is bilinear, anti-symmetric, and satisfies
the Jacobi identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, ∀A,B,C ∈ G.

If we pick a basis {T a} for G (often called a set of generators of the Lie group G), closure of G under
the Lie bracket gives rise to a set of constants {fabc} defined by

[T a, T b] = ifabcT c.

The fabc’s are called structure constants. We can choose a basis for G such that these constants are
totally antisymmetric in the indices a, b, c. This is the same basis that diagonalizes the symmetric bilinear
form

(ta, tb) 7→ Tr
[
tatb

]
.

Classification of Compact, Simple Lie Groups
In gauge theory we are primarily interested in Lie groups that admit finite dimensional unitary rep-

resentations. This requires that we consider compact groups. The classification scheme of such groups
is aided by looking only at so-called simple Lie groups, ones which have no non-trivial normal Lie sub-
groups. In particular, such groups have no Lie subgroups isomorphic to U(1) contained in its center (the
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subgroup of elements commuting with all of G). These simple compact Lie groups run in three infinite
families:

(1) SU(n) = {M ∈ GL(n,C)|MM† = I}
(2) SO(n) = {M ∈ GL(n,R)|MM> = I}
(3) Sp(2n) = {M ∈ GL(2n,R)|MJM> = I}

where

J =
(

0 In

−In 0

)
.

The Lie algebras associated to these groups are:
(1) sun = {M ∈ gl(n,C)|M + M† = 0}
(2) son = {M ∈ gl(n,R)|M + M> = 0}
(3) sp2n = {M ∈ gl(2n,R)|MJ + JM> = 0}

where gl(n,C) is the space of all n× n C-valued matrices. Analogously for gl(n,R).
The dimensions of the above algebras (as real vector spaces) are n2−1, n(n−1)/2, and 2n(2n+1)/2,

respectively.
There are also five exceptional Lie algebras, denoted by F4, G2, E6, E7, E8.

Representation Theory
The possible forms of a Lagrangian invariant under the action of a Lie group G is determined by the

representations of G. The representations of simple Lie groups and their corresponding Lie algebras have
the nice property of being completely decomposable. If such a group acts on a finite dimensional vector
space V , we can decompose V as a direct sum of subspaces Vi, where each Vi is preserved under the
action of G and admits no further invariant subspace. Hence to understand the representation theory
of G it suffices to look at its action on spaces that contain no proper non-zero invariant subspace. Such
representations are called irreducible.

Examples of irreducible representations:
(1) Standard representation of sun: Just sun acting by matrix multiplication on Cn.
(2) Spin representations of su2: For j ∈ 1

2Z, take a 2j + 1-dimensional space with basis 〈−j|, 〈−j +
1|, . . . , 〈j|, along with raising and lowering operators J±, and J3 = [J+, J−]. Over C, su2

∼=
〈J±, J3〉, and each basis element 〈k| is an eigenvector of J3 with eigenvalue k. These give all the
irreducible representations of su2.

For any Lie algebra G we also have the adjoint representation, where G acts on itself via the commu-
tator [, ]. That is,

t : u 7→ [t, u] = tG(u),∀t, u ∈ G.

In this case, the matrix representing the linear transformation tG is given by the structure constants.
Also, if we go back to the definition of the general covariant derivative Dµ, we see that Dµ acts on a

field by

Dµ
~φ = ∂µ

~φ− igAb
µtbG

~φ.

Likewise, the vector ~Aµ transforms infinitesimally as

Aa
µ → Aa

µ +
1
g
(Dµα)a.

Some Algebraic Results
For any irreducible representation r of G of a vector space V , if we pick any basis {T a} for G, we can

construct the operator
T 2 =

∑
a

(T a)2.

This element commutes with the action of G on V . To see this, we pick a basis for G that diagonalizes
the bilinear form given above. Then expanding [T 2, T b] in terms of structure constants, using the fact
that they are totally antisymmetric, gives the result. Since the representation r is irreducible, T 2 is a
constant times the identity matrix:

∑
a

(T a)2 = C2(r)Id
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where d = d(r) is the dimension of the representation. This operator T 2 is called the quadratic Casimir
operator associated to the representation r.

Our basis of G is chosen so that Tr((T a)2) = C(r), ∀a, where C(r) is another constant. Taking the
trace then implies

d(r)C2(r) = d(G)C(r).
The constants C2(r), C(r) will depend on the choice of basis for G, but they are always related by the
equation above.

A Word About Tensor Products and Direct Sums of Representations
If we have two irreducible representations of G on vector spaces V1 and V2, we get an action of G on

the direct sum V1 ⊕ V2 in a natural way:

t · (v ⊕ w) = (t · v)⊕ (t · w).

In concrete terms, the matrix representation of t is given by(
t1 0
0 t2

)
,

where t1 is the matrix representing the action of t on V1, and analogously for t2.
Likewise, we get a representation of G on the tensor product V1 ⊗ V2 by

t · (v × w) = (t · v)⊗ (1 · w) + (1 · v)⊗ (t · w).

Note that this is not the same as the action given by the direct sum.
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Solutions to Suggested Problems

15.1 Brute-Force Computations in SU(3).
The standard basis for the fundamental representation of SU(3) is given by

t1 =
1
2




0 1 0
1 0 0
0 0 0


 , t2 =

1
2




0 −i 0
i 0 0
0 0 0


 , t3 =

1
2




1 0 0
0 −1 0
0 0 0


 , t4 =

1
2




0 0 1
0 0 0
1 0 0


 ,

t5 =
1
2




0 0 −i
0 0 0
i 0 0


 , t6 =

1
2




0 0 0
0 0 1
0 1 0


 , t7 =

1
2




0 0 0
0 0 −i
0 i 0


 , t8 =

1
2
√

3




1 0 0
0 1 0
0 0 −2


 .

a) Why are there exactly eight matrices in this basis?
When we represent this group in Mat3(C), the basis will be given by a set of 3× 3 matrices

over the field C(∼= R× R) and so there can be at most 2 · 32 matrices corresponding to the real
and imaginary parts of each entry.

Because the elements of the SU(3) group satisfy U†U = 13×3 (by the definition of unitarity).
This gives us 3 conditions corresponding to the diagonal entries of 13×3 and 2 · 32−3

2 conditions
for the independent off-diagonal entries. There is also one additional condition which demands
that the determinant is 1.

Therefore, the complete set of 3 × 3 unitary matrices over C are spanned by no more than
2 · 32 − 3− 32 + 3− 1 = 32 − 1 = 8 basis matrices. Because we have found 8 above, there must
be exactly eight.

To generalize this argument to any SU(N) group, simply replace every instance of ‘3’ with ‘N ’.

c) Let us check that this representation satisfies the orthogonality condition,

Tr
[
tatb

]
= C(r)δab.

We note by direct calculation that Tr
[
tatb

]
= 0 ∀a 6= b. Therefore, we must only verify the

eight matrices themselves. Again by direct calculation, we see that

Tr [t1 · t1] = Tr [t2 · t2] = Tr [t3 · t3] = Tr [t4 · t4] = Tr [t5 · t5] = Tr [t6 · t6] = Tr [t7 · t7] = Tr [t8 · t8] =
1
2
.

Therefore, C(r) = 1
2 .

d) We are to compute the value of the quadratic Casimir operator C2(r) directly from its definition
and verify its relation to C(r).

By direct calculation, we find that

tata =
4
3
13×3,

and therefore C2(r) = 4
3 . This agrees with the expected value C2(3) = 32−1

2·3 = 4
3 .

15.2 Adjoint Representation of SU(2).
We are to write down the basis matrices of the adjoint representation of SU(2) and verify its canonical

properties. From the definition of the adjoint representation, we see that

t1 = iεi1j = i




0 0 0
0 0 −1
0 1 0


 , t2 = iεi2j = i




0 0 1
0 0 0
−1 0 0


 , t3 = iεi3j = i




0 −1 0
1 0 0
0 0 0


 .

It is almost obvious that Tr [titj ] = 0 ∀i 6= j. It is interesting to note that the product of any two distinct
matrices will yield a matrix with single nonzero entry of −1 in an off-diagonal position; hence, the trace
of a product of distinct matrices will vanish.

It is easy to verify that Tr
[
t21

]
= Tr

[
t22

]
= Tr

[
t23

]
= 2, and therefore C(G) = 2.

Likewise, notice that

t21 + t22 + t23 =




2 0 0
0 2 0
0 0 2


 = 2δij ,

and therefore C2(G) = 2.
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15.5 Casimir Operator Computations.
This problem develops an alternative way of deriving the Casimir operators and other constants

associated with an algebra and its representation.
a) Let us consider a group G which contains a subalgebra isomorphic to su2. In general, any

irreducible representation r of G may be decomposed into a sum of representations of su2:

r →
∑

ji,

where ji are the spins of SU(2) representations.
As we have done before, let us denote the generators of su2 by J±, J3, with J3 the diagonal

operator. Because we are given an irreducible representation of G on a vector space V , when we
restrict the action to su2, V decomposes into a sum of irreducible subspaces

⊕
i Vji

, where Vji

is the spin ji representation space of su2.
Therefore, by the definition of the of C(r), we see that

Tr
[
J2
− + J2

+ + J2
3

]
= 3C(r).

However, using the decomposition stated above, we see that

3C(r) = Tr
[
J2
− + J2

+ + J2
3

]
= Tr

[∑

i

(J−)2ji
+ (J+)2ji

+ (J3)2ji

]

where, for example, (J−)ji
is the restriction of J− to Vji

. Then using the identity, d(r)C2(r) =
d(G)C(r), we see that

3C(r) = Tr

[∑

i

(J−)2ji
+ (J+)2ji

+ (J3)2ji

]
,

= 3C(ji).

Now, noting the definition of C(r) and the fact that (J3)ji〈k| = k〈k|, we get

C(ji) = Tr
[
(J3)2ji

]
= 2

∑

k

k2,

= 2
ji(ji + 1)(2ji + 1)

6
,

=
1
3
ji(ji + 1)(2ji + 1).

Note that this formula holds for any set of integer or half-integer values of k.
Combining these results, we see that

∴ 3C(r) =
∑

i

ji(ji + 1)(2ji + 1).
‘óπερ ’έδει δε�ιξαι

b) Under an su2 subgroup of sun, the fundamental representation N transforms as a 2-component
spinor (j = ½) and (N − 2) singlets. We are to use this to show that C(N) = ½ and that the
adjoint representation of sun decomposes into one spin 1, 2(N − 2) spine-½, and singlets to show
that C(G) = N .

Because we have that sun decomposes into a 2-component spinor and singlets, we may use
our result from part (a) to see that

3C(N) = ½(½+ 1)(2 · ½ + 1) + 0 = 3/2,

∴ C(N) =
1
2
.

Let us now prove the properties of the adjoint representation. Let G = sun under the restric-
tion H = su2, we will embed H into G by the map

t 7→
(

t 0
0 0

)

where t is a 2 × 2 block of the matrix. The adjoint action of H on itself gives rise to a spin 1
representation of dimension 3, leaving a n2 − 4 dimensional complementary invariant subspace.
Those elements of G whose entries are in the lower right (n− 2)× (n− 2) block commute with
H and hence give rise to 1 dimensional subspaces (singlets).
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If we let Ei,j denote the matrix with 1 in the (i, j)th position and zeros everywhere else, then
the subspaces V +

j = 〈E1,j , E2,j〉 and V −
j = 〈Ej,1, Ej,2〉 for j = 3, . . . , n are invariant under su2.

There are 2(n− 2) such subspaces and so this completes the decomposition.

c) Symmetric and antisymmetric 2-index tensors form irreducible representations of sun. We are
to compute C2(r) for each of these representations. The direct sum of these representations is
the product representation N ×N . We are to verify that our results C2(r) agree with the work
in the text.

Let A denote the antisymmetric representation, S the symmetric representation of sun, and
let V be the fundamental representation of sun with the standard basis {e1, . . . , en}. We can
compute C(A) and C(S) by determining the action of the diagonal operator J3 on Sym2(V )
and V ∧ V .

The standard basis for Sym2(V ) is given by {ei⊗ej}, 1 ≤ i ≤ j ≤ n with dimension n(n+1)/2.
Then J3 acts on the basis by

e1 ⊗ ej 7→ ½(e1 ⊗ ej) j > 2,

e2 ⊗ ej 7→ −½(e2 ⊗ ej) j > 2,

e1 ⊗ e2 7→ 0,

e1 ⊗ e1 7→ e1 ⊗ ej ,

e2 ⊗ e2 7→ −(e2 ⊗ ej).

These give the diagonal entries for the matric representation of J3 and all other entries are zero.
Taking the sum of the squares of the diagonal entries gives

C(S) = ½(n− 2) + 2 =
n + 2

2
.

We can do the same with the antisymmetric representation, which has a basis of {ei∧ej}, 1 ≤
i ≤ j ≤ n with dimension n(n− 1)/2. The action of J3 is then given by

e1 ∧ ej 7→ ½(e1 ∧ ej) j > 2,

e2 ∧ ej 7→ −½(e2 ∧ ej) j > 2,

e1 ∧ e2 7→ 0.

Comparing this with our previous result, we see that

C(A) =
n− 2

2
.

We can now compute the quadratic Casimir operators C2(A) and C2(S) using the identity
d(r)C2(r) = d(G)C(r), we get

C2(S) =
(n2 − 1)C(S)
n(n + 1)/2

,

=
(n− 1)(n + 2)

n
.

C2(A) =
(n2 − 1)C(A)
n(n− 1)/2

,

=
(n + 1)(n− 2)

n
.

We may check this result with the work of Peskin and Schroeder by computing

(C2(A) + C2(S))d(A)d(S) = C2(A)d(A) + C2(S)d(S),

= (n2 − 1)
(

n + 2
2

+
n− 2

2

)
,

=
(
n2 − 1

)
n.

This result checks.


