
Physics 523, Quantum Field Theory II
Homework 4

Due Wednesday, 4th February 2004

Jacob Lewis Bourjaily

The Anomalous Magnetic Moments of e− and µ−

We are to investigate the possible contributions of scalar loops to the QED anomalous magnetic
moments of the electron and muon. First we will consider contributions from a Higgs particle, h. We
casually note that because the interaction Hamiltonian is given by,

Hint =
∫

dx λ√
2
hψψ,

our vertex rule is

�
h

= −i λ√
2
.

Therefore, we may now compute the amplitude for the following interaction.

iM =�p k

p− k

k′ = k + q

←−q

p′

e−=
∫

d4k

(2π)4
u(p′)

−iλ√
2

i

((p− k)2 −m2
h + iε)

i(6 k′ + m)
(k′2 −m2 + iε)

(−ieγµ)
i(6 k + m)

(k2 −m2 + iε)
−iλ√

2
u(p),

∴ iM =
eλ2

2

∫
d4k

(2π)4
u(p′) [(6k′ + m)γµ(6k + m)] u(p)

(k2 −m2 + iε)(k′2 −m2 + iε)((p− k)2 −m2
h + iε)

. (a.2)

Let us now simplify the denominator using Feynman parametrization. Using the same procedure as
before, we see that we may reduce the denominator to the form,

1
(k2 −m2

e + iε)(k′2 −m2
e + iε)((p− k)2 −m2

h + iε)
,

=
∫

dxdydzδ(3)(x + y + z − 1)
2

[xk2 + yk2 + zk2 + 2yqk + yq2 + zp2 − 2zpk − xm2 − ym2 − zm2
h + (x + y + z)iε]3

,

=
∫

dxdydzδ(3)(x + y + z − 1)
2

[k2 + 2k(yq − zp) + yq2 + zp2 − (1− z)m2 − zm2
h + iε]3

,

Introducing the terms,

` ≡ k + yq − zp and ∆ = −xyq2 + (1− z)2m2 + zm2
h,

we see that the denominator becomes,
∫

dxdydzδ(3)(x + y + z − 1)
2

[`2 −∆ + iε]3
(a.3)

We are now ready to simplify the numerator of the integrand using the parameters ` for equation (a.2)
above. There are arguably more elegant ways to go about this calculation, but we will simplify by brute
force. We will use, without repeated demonstration, several identities that were shown in homework 2.
Specifically, we will expand the integrand with the knowledge that all terms linear in ` will integrate to
zero and so may be ignored. Furthermore, we are only interested in terms that do not involve a γµ so in
the below tabulation of results from the Dirac algebra, we will simply write 6qγµ → −2pµ with knowledge
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that 6qγµ = 2mγµ − 2pµ because we are uninterested in terms proportional to γµ.
We will begin our simplification with a full expansion of the numerator as follows:

N = u(p′) [(6k′ + m)γµ(6k + m)] ,

= u(p′)
[6k′γµ 6k + m 6k′γµ + mγµ 6k + m2γµ

]
u(p),

→ u(p′)
[
6`γµ 6`︸ ︷︷ ︸

i

−y(1− y)6qγµ 6q︸ ︷︷ ︸
ii

+z(1− y) 6qγµ 6p︸ ︷︷ ︸
iii

−zy 6pγµ 6q︸ ︷︷ ︸
iv

+z2 6pγµ 6p︸ ︷︷ ︸
v

+m2γµ

+ m(1− y) 6qγµ

︸︷︷︸
vi

+mz 6pγµ

︸︷︷︸
vii

−my γµ 6q︸︷︷︸
viii

+mz γµ 6p︸︷︷︸
ix

]
u(p).

Using Dirac algebra and our results from homework 2, we see that

(i) → 0, (ii) → 0, (iii) → −2mpµ,

(iv) → 2mpµ, (v) → 2mpµ, (vi) → −2pµ,

(vii) → 2pµ, (viii) → 2p′µ, (xi) → 0.

Using this result (which ignores all terms linear in ` and γµ), we see that

N → u(p′)
[
− 2mz(1− y)pµ − 2mzyp′µ + 2mz2pµ − 2m(1− y)pµ + 2mzpµ − 2myp′µ

]
u(p),

= u(p′)
[
mp′µ(−2zy − 2y) + mpµ(2zy + 2y + 2z2 − 2)

]
u(p),

= u(p′)
[
m(p′µ − pµ)(−2zy − 2y) + mpµ(2z2 − 2)

]
u(p),

= u(p′)
[
m(p′µ − pµ)(−2zy − 2y) + mpµ(2z2 − 2) + mp′µ(z2 − 1)−mp′µ(z2 − 1)

]
u(p),

= u(p′)
[
(p′µ + pµ)m(z2 − 1) + (p′µ − pµ)m(1− z2 − 2zy − 2y)

]
u(p),

∴ N → u(p′)
[
(p′µ + pµ)m(z2 − 1) + (p′µ − pµ)m(y − x)(z − 1)

]
u(p). (a.4)

We notice almost trivially that this satisfies the Ward identity because the term proportional to
qµ = (p′µ − pµ) is odd under the interchange of x ↔ y while the integral is symmetric under x ↔ y.
Therefore the term proportional qµ will vanish when integrated.

Recall that our goal is to discover this diagram’s contribution to the anomalous magnetic moment, the
F2(q2) term. We recall that we have defined the corrected vertex function Γµ in terms of the functions
F1 and F2 as

Γµ = γµF1(q2) +
iσµνqν

2m
F2(q2).

Because the term proportional to (p′µ + pµ) is multiplied on the outside by u(p′) and u(p), we may use
the Gordon identity to express it in terms of iσµνqν

2m and γµ. Because we are generally ignoring all terms
proportional to γµ, we may substitute

m(z2 − 1)(p′µ + p) → 2m2(1− z2)
iσµνqν

2m
.

Because F2(q2) is the term proportional to the iσµνqν

2m term, we see that this implies that

F2(q2) =
∫

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4
iλ2

2
2m2(1− z2)2
[`2 −∆ + iε]3

.
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We may simplify this integral substantially by recalling our work in homework 2 when we computed
general integrals of this form. Taking the limit of q → 0, we see that

F2(q2) =
∫

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4
iλ2

2
2m2(1− z2)2
[`2 −∆ + iε]3

,

=
∫

dxdydzδ(3)(x + y + z − 1)
[
iλ2

2
−i

(4π)2
4m2(1− z2)

2
1
∆

]
,

=
λ2m2

e

16π2

∫
dxdydzδ(3)(x + y + z − 1)

(1− z2)
zm2

h + (1− z)2m2
e

,

=
λ2m2

e

16π2

∫ 1

0

dz
(1− z)(1− z2)

zm2
h + (1− z)2m2

e

,

≈ λ2m2
e

16π2

[∫ 1

0

dz
1

zm2
h + (1− z)2m2

e

− 1
m2

h

∫ 1

0

dz1 + z − z2

]
,

=
λ2m2

e

16π2m2
h




∫ 1

0

dz
1

z + (1− z)2 m2
e

m2
h

− 7
6


 . (a.8)

Now, let us simplify this formula in the limit where the Higgs mass is very much larger than the
electron.

F2(q2) ≈ λ2m2
e

16π2m2
h


 1

1− m2
e

m2
h

∫ 1

m2
e

m2
h

du
1
u
− 7

6


 ,

=
λ2m2

e

16π2m2
h


 1

1− m2
e

m2
h

(
ln(1)− ln

(
m2

e

m2
h

))
− 7

6


 ,

∴ F2(q2) ≈ λ2m2
e

16π2m2
h

[
ln

(
m2

h

m2
e

)
− 7

6

]
. (b.1)

Let us try to compute this contribution for real experimental numbers. We can take a more or less
‘good’ estimate of the Higgs vacuum expectation value as v = 246GeV. We know that the coupling
constant λ may be written in terms of the experimental mass of the electron as λe = me

v

√
2 ≈ 2.94 ×

10−6. If we take a rather hopeful estimate for the Higgs mass, we can assume it is near its lower
experimental bound at mh ≈ 114GeV. Using these numbers, we calculate an anomalous magnetic
moment contribution of

δhiggsae ≈ 2.58× 10−23. (b.2)

For the muon, we get a coupling to the Higgs of λµ = mµ

v

√
2 ≈ 6.03 × 10−4. Using the same

approximate Higgs mass of 114GeV, we see that the anomalous magnetic moment of the muon is altered
by

δhiggsaµ ≈ 2.51× 10−14. (b.3)

Let us now consider the contribution given for an interaction with an axion particle given by the
interaction Hamiltonian

H =
∫

dx iλ√
2
aψγ5ψ.

We see immediately that our vertex rule is given by

�
a

= λ√
2
γ5.
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Let us now write out the amplitude for the axion’s contribution to the vertex function. We see that

iM =�p k

p− k

k′ = k + q

←−q

p′

e−

=
∫

d4k
(2π)4 u(p′) λ√

2
γ5 i

((p−k)2−m2
a+iε)

i(6 k′+m)
(k′2−m2+iε) (−ieγµ) i(6 k+m)

(k2−m2+iε)γ
5 λ√

2
u(p),

∴ iM =
eλ2

2

∫
d4k

(2π)4
−u(p′)

[
γ5(6k′ + m)γµ(6k + m)γ5

]
u(p)

(k2 −m2 + iε)(k′2 −m2 + iε)((p− k)2 −m2
a + iε)

. (c.1)

We can simplify the numerator and demoninator as before. Notice that the only change in the
denominator algebra is that ∆ = −xyq2 + (1 − z)2m2

e − zm2
a. In the numerator, we can commute the

γ5 through each of the terms to get a minus sign relative to the ‘slash’ terms. When we also take into
account the overall minus which multiplies the numerator, we arrive at

iM =
eλ2

2

∫
d4k

(2π)4
−u(p′) [(6k′ −m)γµ(6k −m)] u(p)

(k2 −m2 + iε)(k′2 −m2 + iε)((p− k)2 −m2
a + iε)

.

This is of course very similar to the equation derived in parts (a). Recall when we expanded all of the
terms for the Higgs, we had some of the ‘m’ terms that came from the Dirac algebra and some explicit
the equation as above. Taking these differences into account, we can use our work from part (a) to arrive
at a simplified numerator.

N → −u(p′)
[
− 2mz(1− y)pµ − 2mzyp′µ + 2mz2pµ + 2m(1− y)pµ − 2mzpµ + 2myp′µ

]
u(p),

= −u(p′)
[
mpµ(−2z(1− y) + 2z2 + 2− 2y − 2z) + mp′µ(−2zy + 2y)

]
u(p),

= −u(p′)
[
m(p′µ − pµ)(2y − 2zy)m + mpµ(−4z + 2z2 + 2)

]
u(p),

= −u(p′)
[
m(p′µ − pµ)(2y − 2zy)m + mpµ(−4z + 2z2 + 2) + mp′µ(1− z)2 −mp′µ(1− z)2

]
u(p),

= −u(p′)
[
(p′µ + pµ)(1− z)2m + (p′µ − pµ)(2y − 2zy − (1− z)2)m

]
u(p).

Again, using the Gordong identity, we may write the contribution to F2(q2) as

F2(q2) =
∫

dxdydzδ(3)(x + y + z − 1)
∫

d4`

(2π)4
iλ2

2
2m2(1− z)22
[`2 −∆ + iε]3

,

=
∫

dxdydzδ(3)(x + y + z − 1)
[
iλ2

2
−i

(4π)2
4m2(1− z)2

2
1
∆

]
,

∴ F2(q2) =
λ2m2

e

16π2

∫ 1

0

dz
(1− z)3

zm2
a + (1− z)2m2

e

. (c.2)

Now, this integral cannot be so easily takn in the limit of a heavy axion. In fact, experimental evidence
strongly limits the mass of the axion to be very, very light. The most restrictive data, from Supernova
1987a, restricts ma . 10−5eV. In the limit where the axion is very, very much lighter than the electron,
we see that

F2(q2) =
λ2m2

e

16π2

∫ 1

0

dz
(1− z)3

zm2
a + (1− z)2m2

e

,

≈ λ2

16π2

∫ 1

0

dz
(1− z)3

(1− z)2
=

λ2

32π2
,

∴ δaxionae ≈ δaxionaµ ≈ λ2

32π2
. (c.3)


