Problem Set 9

Due: Tuesday, March 10 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1-10.

Problem 1. Prove that elements x and y are conjugate in a group G if and only if $\chi(x)=\chi(y)$ for all irreducible characters χ of G.

Problem 2. Let H and K be finite groups and V be a \mathbb{C}-vector space. Let $G=H \times K$ and let $\phi: H \rightarrow G L(V)$ be an irreducible representation of H with character χ. Then $G \xrightarrow{\pi_{H}} H \xrightarrow{\phi} G L(V)$ gives an irreducible representation of G, where π_{H} is the natural projection; the character $\widetilde{\chi}$ of this representation is $\widetilde{\chi}((h, k))=\chi(h)$. Likewise any irreducible character ψ of K gives an irreducible character ψ of G with $\widetilde{\psi}((h, k))=\psi(k)$.

Prove that the product $\widetilde{\chi} \widetilde{\psi}$ is an irreducible character of G.
Problem 3. Show that the element " $2 \otimes 1$ " is 0 in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ but is nonzero in $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$.
Problem 4. An element of a tensor product $M \otimes_{R} N$ is a simple tensor if it is of the form $m \otimes n$ for $m \in M, n \in N$. Let F be a field and let V be an n-dimensional F-vector space.
(a) The vector space $V \otimes_{F} V$ can be identified with $M_{n}(F)$ via $e_{i} \otimes e_{j} \mapsto E_{i j}$, where e_{1}, \ldots, e_{n} is a basis of V and $E_{i j}$ is the matrix with a 1 in the i, j th spot and 0 's elsewhere. Express what it means for an element of $V \otimes_{F} V$ to be a simple tensor in terms of concepts from linear algebra.
(b) Suppose $n \geq 2$. Show that the element $e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$ in $V \otimes_{F} V$ is not a simple tensor.

Problem 5. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic left \mathbb{Q}-modules.
Problem 6. Suppose R is commutative and let I and J be ideals of R, so R / I and R / J are naturally R-modules.
(a) Prove that every element of $R / I \otimes_{R} R / J$ can be written as a simple tensor of the form $(1 \bmod I) \otimes(r \bmod J)$.
(b) Prove that there is an R-module isomorphism $R / I \otimes_{R} R / J \cong R /(I+J)$ mapping $(r \bmod I) \otimes\left(r^{\prime} \bmod J\right)$ to $r r^{\prime} \bmod (I+J)$.

Problem 7. Let A be any ring, let L be any left A-module, and let $L^{\oplus n}$ be the direct sum of n copies of L with itself.
(a) Prove the ring isomorphism $\operatorname{Hom}_{A}\left(L^{\oplus n}, L^{\oplus n}\right) \cong M_{n}(D)$, where $D=\operatorname{Hom}_{A}(L, L)$.
(b) Deduce that if L is an irreducible A-module, then $\operatorname{Hom}_{A}\left(L^{\oplus n}, L^{\oplus n}\right)$ is isomorphic to a matrix ring over a division ring.

Problem 8. The alternating group A_{4} is a subgroup of \mathcal{S}_{4}, hence $\mathbb{C} A_{4}$ is a subalgebra of $\mathbb{C} \mathcal{S}_{4}$. Therefore any $\mathbb{C} S_{4}$-module is a $\mathbb{C} A_{4}$-module by restriction. For each irreducible $\mathbb{C} \mathcal{S}_{4}$-module V, determine the decomposition of V, regarded as a $\mathbb{C} A_{4}$-module, into irreducibles. Feel free to use the character table for A_{4} in 19.1.

Problem 9. By the Artin-Wedderburn Theorem and the character table of \mathcal{S}_{3}, we have the following isomorphism of rings:

$$
\mathbb{C} \mathcal{S}_{3} \cong M_{1}(\mathbb{C}) \times M_{2}(\mathbb{C}) \times M_{1}(\mathbb{C}) .
$$

Determine explicitly the elements $\left([1],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],[0]\right),\left([0],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],[0]\right),\left([0],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],[1]\right)$
on the right hand side in terms of the basis $\left\{\pi: \pi \in \mathcal{S}_{3}\right\}$ of $\mathbb{C} \mathcal{S}_{3}$.
This is equivalent to finding three elements z_{1}, z_{2}, z_{3} in the center of $\mathbb{C} \mathcal{S}_{3}$ such that

- $z_{1}+z_{2}+z_{3}=1$,
- $z_{i}^{2}=z_{i}$,
- $z_{i} z_{j}=z_{j} z_{i}=0$ for $i \neq j$.

Problem 10. Let F be a field and G a finite group. Let V and W be $F G$-modules.
(a) Consider the F-vector space $V \otimes_{F} W$. Show that if $g \in G$ acts on $V \otimes_{F} W$ by

$$
g \cdot(v \otimes w):=g v \otimes g w \quad \text { for every } v \in V, w \in W
$$

then this gives $V \otimes_{F} W$ the structure of an $F G$-module.
(b) Prove that the character of $V \otimes_{F} W$ is given by $\chi_{V \otimes_{F} W}(g)=\chi_{V}(g) \chi_{W}(g)$ for every $g \in G$.

