Problem Set 9

Due: Tuesday, March 10 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1–10.

- **Problem 1.** Prove that elements x and y are conjugate in a group G if and only if $\chi(x) = \chi(y)$ for all irreducible characters χ of G.
- **Problem 2.** Let H and K be finite groups and V be a \mathbb{C} -vector space. Let $G = H \times K$ and let $\phi : H \to GL(V)$ be an irreducible representation of H with character χ . Then $G \xrightarrow{\pi_H} H \xrightarrow{\phi} GL(V)$ gives an irreducible representation of G, where π_H is the natural projection; the character $\tilde{\chi}$ of this representation is $\tilde{\chi}((h,k)) = \chi(h)$. Likewise any irreducible character ψ of K gives an irreducible character $\tilde{\psi}$ of G with $\tilde{\psi}((h,k)) = \psi(k)$. Prove that the product $\tilde{\chi}\tilde{\psi}$ is an irreducible character of G.
- **Problem 3.** Show that the element " $2 \otimes 1$ " is 0 in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ but is nonzero in $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$.
- **Problem 4.** An element of a tensor product $M \otimes_R N$ is a *simple tensor* if it is of the form $m \otimes n$
 - for $m \in M$, $n \in N$. Let F be a field and let V be an n-dimensional F-vector space. (a) The vector space $V \otimes_F V$ can be identified with $M_n(F)$ via $e_i \otimes e_j \mapsto E_{ij}$, where e_1, \ldots, e_n is a basis of V and E_{ij} is the matrix with a 1 in the i, jth spot and 0's elsewhere. Express what it means for an element of $V \otimes_F V$ to be a simple tensor in terms of concepts from linear algebra.
 - (b) Suppose $n \ge 2$. Show that the element $e_1 \otimes e_2 + e_2 \otimes e_1$ in $V \otimes_F V$ is not a simple tensor.

Problem 5. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ are isomorphic left \mathbb{Q} -modules.

- **Problem 6.** Suppose R is commutative and let I and J be ideals of R, so R/I and R/J are naturally R-modules.
 - (a) Prove that every element of $R/I \otimes_R R/J$ can be written as a simple tensor of the form $(1 \mod I) \otimes (r \mod J)$.
 - (b) Prove that there is an *R*-module isomorphism $R/I \otimes_R R/J \cong R/(I+J)$ mapping $(r \mod I) \otimes (r' \mod J)$ to $rr' \mod (I+J)$.
- **Problem 7.** Let A be any ring, let L be any left A-module, and let $L^{\oplus n}$ be the direct sum of n copies of L with itself.
 - (a) Prove the ring isomorphism $\operatorname{Hom}_A(L^{\oplus n}, L^{\oplus n}) \cong M_n(D)$, where $D = \operatorname{Hom}_A(L, L)$.
 - (b) Deduce that if L is an irreducible A-module, then $\operatorname{Hom}_A(L^{\oplus n}, L^{\oplus n})$ is isomorphic to a matrix ring over a division ring.
- **Problem 8.** The alternating group A_4 is a subgroup of S_4 , hence $\mathbb{C}A_4$ is a subalgebra of $\mathbb{C}S_4$. Therefore any $\mathbb{C}S_4$ -module is a $\mathbb{C}A_4$ -module by restriction. For each irreducible $\mathbb{C}S_4$ -module V, determine the decomposition of V, regarded as a $\mathbb{C}A_4$ -module, into irreducibles. Feel free to use the character table for A_4 in 19.1.

Problem 9. By the Artin-Wedderburn Theorem and the character table of S_3 , we have the following isomorphism of rings:

$$\mathbb{C}S_3 \cong M_1(\mathbb{C}) \times M_2(\mathbb{C}) \times M_1(\mathbb{C}).$$

Determine explicitly the elements $\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0&0\\0&0\end{bmatrix},\begin{bmatrix}0\end{bmatrix}\right), \left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}1&0\\0&1\end{bmatrix},\begin{bmatrix}0\end{bmatrix}\right), \left(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}0&0\\0&0\end{bmatrix},\begin{bmatrix}1\end{bmatrix}\right)$ on the right hand side in terms of the basis $\{\pi : \pi \in S_3\}$ of $\mathbb{C}S_3$.

This is equivalent to finding three elements z_1, z_2, z_3 in the center of $\mathbb{C}S_3$ such that

- $z_1 + z_2 + z_3 = 1$, $z_i^2 = z_i$, $z_i z_j = z_j z_i = 0$ for $i \neq j$.

Problem 10. Let F be a field and G a finite group. Let V and W be FG-modules.

(a) Consider the F-vector space $V \otimes_F W$. Show that if $g \in G$ acts on $V \otimes_F W$ by

 $g \cdot (v \otimes w) := gv \otimes gw$ for every $v \in V, w \in W$,

then this gives $V \otimes_F W$ the structure of an *FG*-module.

(b) Prove that the character of $V \otimes_F W$ is given by $\chi_{V \otimes_F W}(g) = \chi_V(g) \chi_W(g)$ for every $g \in G$.