Problem Set 9

Due: Tuesday, November 22

Problem 1. Two graphs are co-spectral if they have the same spectrum (i.e. their adjacency matrices have the same eigenvalues with the same multiplicities). For a tree, the coefficient of $\lambda^{n-2 k}$ in the characteristic polynomial is $(-1)^{k} \mu_{k}(G)$, where $\mu_{k}(G)$ is the number of matchings of size k (you do not need to prove this). Use this to construct a pair of nonisomorphic co-spectral 8 -vertex trees, both with characteristic polynomial $\lambda^{8}-7 \lambda^{6}+9 \lambda^{4}$. (Comment: as $n \rightarrow \infty$, almost no trees are uniquely determined by their spectra.)

Problem 2. The odd girth of a graph G is the length of a shortest odd cycle of G; a graph with no odd cycle has infinite odd girth. Show that co-spectral graphs have the same odd girth.

Problem 3. Determine the number of spanning trees in $K_{m, m}$.
Problem 4. Prove that G is bipartite if G is connected and $\lambda_{\max }(G)=-\lambda_{\min }(G)$.
Problem 5. Light bulbs l_{1}, \ldots, l_{n} are controlled by switches s_{1}, \ldots, s_{n}. The i th switch changes the on/off status of the i th light and possibly others, but s_{i} changes the the status of l_{j} if and only if s_{j} changes the status of l_{i}. Initially all the lights are off. Prove that it is possible to turn all the lights on. (Hint: this uses vector spaces, not eigenvalues.)

