Problem Set 8

Due: Tuesday, March 3 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. In the problems below, G denotes a finite group. For problems involving decomposing representations into irreducibles, it may be helpful to use the character tables in 19.1. Turn in Problems 1-10.

Problem 1. Let $\phi: Q_{8} \rightarrow G L_{4}(\mathbb{C})$ be the representation determined by

$$
i \mapsto\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad j \mapsto\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right] .
$$

Determine the decomposition of ϕ into irreducible representations.
Problem 2. Let $\chi: G \rightarrow \mathbb{C}$ be a character. Show that $\chi(g)=\overline{\chi\left(g^{-1}\right)}$ for every $g \in G$.
Problem 3. Let $\psi: G \rightarrow \mathbb{C}$ be the character of any 2 -dimensional representation of a group G and let x be an element of order 2 in G. Prove that $\psi(x)=2,0$, or -2 . Generalize this to n-dimensional representations.

Problem 4. Let $\chi: G \rightarrow \mathbb{C}$ be an irreducible character of G. Prove that for every element z in the center of G we have $\chi(z)=\epsilon \chi(1)$, where ϵ is some root of 1 in \mathbb{C}.

Problem 5. Let $\phi: G \rightarrow G L(V)$ be a representation and let $\chi: G \rightarrow \mathbb{C}^{\times}$be a degree 1 representation. Prove that $\chi \phi: G \rightarrow G L(V)$ defined by $\chi \phi(g)=\chi(g) \phi(g)$ is a representation (note that multiplication of the linear transformation $\phi(g)$ by the complex number $\chi(G)$ is well defined). Show that $\chi \phi$ is irreducible if and only if ϕ is irreducible. Show that if ψ is the character afforded by ϕ then $\chi \psi$ is the character afforded by $\chi \phi$. Deduce that the product of any irreducible character with a character of degree 1 is also an irreducible character.

Problem 6. The action of \mathcal{S}_{4} on $\{1,2,3,4\}$ induces an action of \mathcal{S}_{4} on subsets of $\{1,2,3,4\}$ of size 2 . For instance, if π is the cycle (132), then
$\pi(\{1,2\})=\{3,1\}, \pi(\{1,3\})=\{3,2\}, \pi(\{1,4\})=\{3,4\}, \pi(\{2,3\})=\{1,2\}, \pi(\{2,4\})=\{1,4\}, \pi(\{3,4\})=\{2,4\}$.
Let $M_{2,2}$ denote the $\mathbb{C} \mathcal{S}_{4}$-module corresponding to this action. Determine the decomposition of $M_{2,2}$ into irreducibles.

Problem 7. The group \mathcal{S}_{3} acts on itself by conjugation. Formally, the action $\sigma: \mathcal{S}_{3} \times \mathcal{S}_{3} \rightarrow \mathcal{S}_{3}$ is given by $\sigma(g, x)=g^{-1} x g$. Let W be the corresponding $\mathbb{C} \mathcal{S}_{3}$-module. Determine the decomposition of W into irreducibles.

Problem 8. Determine the character table of $D_{4 n}$ (assume the field is \mathbb{C}).

Problem 9. Show that the character table (over \mathbb{C}) is an invertible matrix (you can use the fact that it is a square matrix). Use this to prove the second orthogonality relations: Let $\chi_{1}, \ldots, \chi_{r}$ be the irreducible characters of G. For any $x, y \in G$,

$$
\sum_{i=1}^{r} \chi_{i}(x) \overline{\chi_{i}(y)}= \begin{cases}\left|C_{G}(x)\right| & \text { if } x \text { and } y \text { are conjugate in } G \\ 0 & \text { otherwise } .\end{cases}
$$

Here $C_{G}(x)$ denotes the centralizer of x in G.
Problem 10. Recall that for $F G$-modules V and $W, \operatorname{Hom}_{F}(V, W)$ is an $F G$-module via $(g \cdot \phi)(v)=$ $g \phi\left(g^{-1} v\right)$ for every $\phi \in \operatorname{Hom}_{F}(V, W), g \in G, v \in V$. Show that the character $\chi_{\operatorname{Hom}_{F}(V, W)}$ is given by

$$
\chi_{\operatorname{Hom}_{F}(V, W)}(g)=\chi_{V}\left(g^{-1}\right) \chi_{W}(g) \quad \text { for every } g \in G .
$$

Hint: One possible route to proving this is to choose bases for V and W (say V has dimension n and W has dimension m); then $\operatorname{Hom}_{F}(V, W)$ can be identified with $m \times n$-matrices and has a basis $\left\{E_{i j}\right\}$, where $E_{i j}$ denotes the matrix with 1 in the i, j-th spot and 0 elsewhere. Then the matrix corresponding to the action of g on $\operatorname{Hom}_{F}(V, W)$ is an $m n \times m n$-matrix that can be computed explicitly in terms of matrices corresponding to the action of g^{-1} on V, and the action of g on W.

