Problem Set 8

Due: Tuesday, March 3 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. In the problems below, G denotes a finite group. For problems involving decomposing representations into irreducibles, it may be helpful to use the character tables in 19.1. Turn in Problems 1–10.

Problem 1. Let $\phi: Q_8 \to GL_4(\mathbb{C})$ be the representation determined by

	0	-1	0	0			0	0	-1	0	
$i\mapsto$	1	0	0	0	,	$j\mapsto$	0	0	0	1	
	0	0	0	-1			1	0	0	0	
	0	0	1	0			0	-1	0	0	

Determine the decomposition of ϕ into irreducible representations.

Problem 2. Let $\chi: G \to \mathbb{C}$ be a character. Show that $\chi(g) = \overline{\chi(g^{-1})}$ for every $g \in G$.

- **Problem 3.** Let $\psi : G \to \mathbb{C}$ be the character of any 2-dimensional representation of a group G and let x be an element of order 2 in G. Prove that $\psi(x) = 2, 0$, or -2. Generalize this to n-dimensional representations.
- **Problem 4.** Let $\chi : G \to \mathbb{C}$ be an irreducible character of G. Prove that for every element z in the center of G we have $\chi(z) = \epsilon \chi(1)$, where ϵ is some root of 1 in \mathbb{C} .
- **Problem 5.** Let $\phi: G \to GL(V)$ be a representation and let $\chi: G \to \mathbb{C}^{\times}$ be a degree 1 representation. Prove that $\chi \phi: G \to GL(V)$ defined by $\chi \phi(g) = \chi(g)\phi(g)$ is a representation (note that multiplication of the linear transformation $\phi(g)$ by the complex number $\chi(G)$ is well defined). Show that $\chi \phi$ is irreducible if and only if ϕ is irreducible. Show that if ψ is the character afforded by ϕ then $\chi \psi$ is the character afforded by $\chi \phi$. Deduce that the product of any irreducible character with a character of degree 1 is also an irreducible character.
- **Problem 6.** The action of S_4 on $\{1, 2, 3, 4\}$ induces an action of S_4 on subsets of $\{1, 2, 3, 4\}$ of size 2. For instance, if π is the cycle (132), then
- $\pi(\{1,2\}) = \{3,1\}, \pi(\{1,3\}) = \{3,2\}, \pi(\{1,4\}) = \{3,4\}, \pi(\{2,3\}) = \{1,2\}, \pi(\{2,4\}) = \{1,4\}, \pi(\{3,4\}) = \{2,4\}.$ Let $M_{2,2}$ denote the \mathbb{CS}_4 -module corresponding to this action. Determine the decomposition of $M_{2,2}$ into irreducibles.
- **Problem 7.** The group S_3 acts on itself by conjugation. Formally, the action $\sigma : S_3 \times S_3 \to S_3$ is given by $\sigma(g, x) = g^{-1}xg$. Let W be the corresponding $\mathbb{C}S_3$ -module. Determine the decomposition of W into irreducibles.

Problem 8. Determine the character table of D_{4n} (assume the field is \mathbb{C}).

Problem 9. Show that the character table (over \mathbb{C}) is an invertible matrix (you can use the fact that it is a square matrix). Use this to prove the *second orthogonality relations*: Let χ_1, \ldots, χ_r be the irreducible characters of G. For any $x, y \in G$,

$$\sum_{i=1}^{r} \chi_i(x) \overline{\chi_i(y)} = \begin{cases} |C_G(x)| & \text{if } x \text{ and } y \text{ are conjugate in } G\\ 0 & \text{otherwise.} \end{cases}$$

Here $C_G(x)$ denotes the centralizer of x in G.

Problem 10. Recall that for FG-modules V and W, $\operatorname{Hom}_F(V, W)$ is an FG-module via $(g \cdot \phi)(v) = g\phi(g^{-1}v)$ for every $\phi \in \operatorname{Hom}_F(V, W)$, $g \in G$, $v \in V$. Show that the character $\chi_{\operatorname{Hom}_F(V, W)}$ is given by

$$\chi_{\operatorname{Hom}_F(V,W)}(g) = \chi_V(g^{-1})\chi_W(g) \quad \text{for every } g \in G.$$

Hint: One possible route to proving this is to choose bases for V and W (say V has dimension n and W has dimension m); then $\operatorname{Hom}_F(V, W)$ can be identified with $m \times n$ -matrices and has a basis $\{E_{ij}\}$, where E_{ij} denotes the matrix with 1 in the i, j-th spot and 0 elsewhere. Then the matrix corresponding to the action of g on $\operatorname{Hom}_F(V, W)$ is an $mn \times mn$ -matrix that can be computed explicitly in terms of matrices corresponding to the action of g^{-1} on V, and the action of g on W.