Problem Set 8

Due: Tuesday, November 15

Problem 1. Let $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ be the generating function for a sequence a_0, a_1, a_2, \ldots . Express in terms of A the generating functions for the following sequences:

- a) $a_0 + a_1, a_1 + a_2, a_2 + a_3, \ldots$;
- b) $a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots;$
- c) $a_0, a_1 b, a_2 b^2, a_3 b^3, \ldots, b$ is a constant;
- d) $a_0, 0, a_2, 0, a_4, 0, a_60, a_8, 0, \dots$

Problem 2. Solve the recurrence:

$$g_0 = 1,$$

 $g_n = g_{n-1} + 2g_{n-2} + \dots + ng_0.$

Problem 3. The adjacency matrix of the path with n vertices looks like

	$\left(\begin{array}{c} 0\\ 1\\ 0 \end{array} \right)$	$egin{array}{c} 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	· · · · · · · ·	0 0 0	$\begin{pmatrix} 0\\ 0\\ 0\\ 0\\ \cdots\\ 1\\ 0 \end{pmatrix}$	
$A_n :=$	0	0	1	0		0	0	•
	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$	0 0	0 0	0 0	· · · · · · ·	0 1	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	

Determine the eigenvalues of A_n .

Problem 4. Let M_n be the number of paths from (0,0) to (n,0) in an $n \times n$ grid using only steps U = (1,1), F = (1,0) and D = (1,-1) (This is the same as the Catalan numbers except we allow a horizontal step F in addition to U and D). The beginning of the sequence is: $M_0 = 1, M_1 = 1, M_2 = 2, M_3 = 4, M_4 = 9$. Compute some further terms of this sequence. Find a recurrence relation and the generating function $M(x) := \sum_{n \ge 0} M_n x^n$ for this sequence.

Problem 5. The Chebyshev polynomial T_n is defined by the equality

$$\cos n\varphi = T_n(\cos\varphi).$$

Here are the first few Chebyshev polynomials:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$, $T_3(x) = 4x^3 - 3x$.

Prove that

$$\sum_{n \ge 0} T_n(x)t^n = \frac{1 - tx}{1 - 2tx + t^2}.$$