Problem Set 7

Due: Tuesday, February 24 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1-10.

Problem 1. We define the quaternion group Q_{8} by generators and relations:

$$
Q_{8}=\left\langle-1, i, j, k \mid(-1)^{2}=1, i^{2}=j^{2}=k^{2}=i j k=-1\right\rangle .
$$

There is a faithful representation $\phi: Q_{8} \rightarrow G L_{2}(\mathbb{C})$ defined by

$$
\phi(i)=\left[\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right] \text { and } \phi(j)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Write out the matrices $\phi(g)$ for every $g \in Q_{8}$ for this representation.
Problem 2. Let R be a ring. Let M, N be R-modules and $S \subseteq M$ a submodule of M. Let $\pi: M \rightarrow M / S$ be the natural projection. Let $\Theta: \operatorname{Hom}_{R}(M / S, N) \rightarrow \operatorname{Hom}_{R}(M, N)$ given by $\phi \mapsto \phi \circ \pi$. Show that Θ is injective and that the image of Θ consists of those $\alpha \in$ $\operatorname{Hom}_{R}(M, N)$ such that $S \subseteq \operatorname{ker}(\alpha)$. This shows that "giving a map from M / S to N is the same as giving a map from M to N that sends S to 0 ".

Problem 3. Prove that the degree 1 representations of G are in bijective correspondence with the degree 1 representations of the abelian group G / G^{\prime} where $G^{\prime}:=\left\langle a b a^{-1} b^{-1} \mid a, b \in G\right\rangle$ is the commutator subgroup of G.

Problem 4. Prove that if $|G|>1$ then every irreducible $F G$-module has dimension $<|G|$.
Problem 5. Let $V=\mathbb{C}\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the 4-dimensional $\mathbb{C} \mathcal{S}_{4}$-module and $\phi: \mathcal{S}_{4} \rightarrow G L_{4}(\mathbb{C})$ be the corresponding representation, where \mathcal{S}_{4} acts on the basis $\left\{e_{i}\right\}$ by permuting indices. Let $\pi: D_{8} \rightarrow \mathcal{S}_{4}$ be the group homomorphism given by viewing \mathcal{S}_{4} as the permutations of the vertices of a square (this realizes D_{8} as the subgroup of \mathcal{S}_{4} that preserves the edges of the square). Hence $\phi \circ \pi$ is a representation of D_{8} and we can consider V as the corresponding $\mathbb{C} D_{8}$-module. Write V as a direct sum of irreducible $\mathbb{C} D_{8}$-modules.

Problem 6. Let $\phi: G \rightarrow G L_{n}(\mathbb{C})$ be a representation of the finite group G. Show that for every $g \in G, \phi(g)$ is diagonalizable and its eigenvalues are roots of unity.

Problem 7. Let G be a finite group. For any automorphism $\psi: G \rightarrow G$ and representation $\phi: G \rightarrow G L(V)$, we get a new representation $\phi \circ \psi: G \rightarrow G L(V)$. However, this new representation $\phi \circ \psi$ may be equivalent to ϕ. Find an example of a group G, an automorphism ψ, and a representation ϕ such that $\phi \circ \psi$ and ϕ are not equivalent.

Problem 8. We say that $n \times n$ matrices A_{1}, \ldots, A_{k} are simultaneously diagonalizable if there is an invertible matrix P such that $P^{-1} A_{i} P$ are diagonal matrices for all i. Let $\left\{A_{1}, \ldots, A_{k}\right\} \subseteq$ $G L_{n}(\mathbb{C})$ be a subgroup of commuting matrices. Show that these matrices are simultaneously diagonalizable using representation theory.

Problem 9. Let $\phi: G \rightarrow G L_{n}(\mathbb{C})$ be an irreducible representation of the finite group G. Show that if $g \in Z(G)$, then $\phi(g)=c I_{n}$ for some $c \in \mathbb{C}$.

Problem 10. Determine the list of 2-dimensional irreducible representations of the dihedral group $D_{4 n}$ of order $4 n$.

