Problem Set 7

Due: Tuesday, November 8

- **Problem 1.** Prove combinatorially that the number of compositions of n with odd parts is the n-th Fibonacci number F_n by finding a simple bijection between such compositions and the compositions of n-1 with parts 1 and 2. (For example, for n = 5 this requires finding a bijection between $\{311, 131, 1111, 113, 5\}$ and $\{112, 121, 211, 22, 1111\}$.)
- **Problem 2.** How many permutations $w = a_1 a_2 \dots a_n \in S_n$ have the property that for all $1 \leq i < n$, the numbers appearing in w between i and i + 1 (whether i is to the left or right of i + 1) are all less than i? (Prove that your formula is correct.) An example of such a permutation is 976412358.
- **Problem 3.** Using the generating function for the Fibonacci numbers, prove the following identities (recall our indexing convention $F_1 = F_2 = 1, F_3 = 2, ...$):
 - a) $F_1 + F_2 + \dots + F_n = F_{n+2} 1;$
 - b) $F_1 + F_3 + \dots + F_{2n-1} = F_{2n};$
 - c) $F_2 + F_4 + \dots + F_{2n} = F_{2n+1} 1;$
 - d) $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$.
- **Problem 4.** An *n*-th root of unity is a complex number ζ satisfying $\zeta^n = 1$, i.e. $\zeta = e^{2\pi i k/n}$ for some $k \in \mathbb{Z}$. An *n*-th root of unity is *primitive* if $\zeta^k \neq 1$ for all $k = 1, \ldots, n-1$. Let $f_n(z)$ be the function that has as its zeros all primitive *n*-th roots of unity. Prove that

$$f_n(z) = \prod_{k|n} (z^k - 1)^{\mu(\frac{n}{k})}.$$

Problem 5. Let T_n be the number of triangulations of a convex (n + 2)-gon into n triangles by n - 1 diagonals that do not intersect in their interiors. Find and prove a formula for T_n .