Problem Set 7

Due: Tuesday, November 8

Problem 1. Prove combinatorially that the number of compositions of n with odd parts is the n-th Fibonacci number F_{n} by finding a simple bijection between such compositions and the compositions of $n-1$ with parts 1 and 2 . (For example, for $n=5$ this requires finding a bijection between $\{311,131,11111,113,5\}$ and $\{112,121,211,22,1111\}$.)

Problem 2. How many permutations $w=a_{1} a_{2} \ldots a_{n} \in \mathcal{S}_{n}$ have the property that for all $1 \leq i<n$, the numbers appearing in w between i and $i+1$ (whether i is to the left or right of $i+1$) are all less than i ? (Prove that your formula is correct.) An example of such a permutation is 976412358 .

Problem 3. Using the generating function for the Fibonacci numbers, prove the following identities (recall our indexing convention $F_{1}=F_{2}=1, F_{3}=2, \ldots$):
a) $F_{1}+F_{2}+\cdots+F_{n}=F_{n+2}-1$;
b) $F_{1}+F_{3}+\cdots+F_{2 n-1}=F_{2 n}$;
c) $F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1}-1$;
d) $F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.

Problem 4. An n-th root of unity is a complex number ζ satisfying $\zeta^{n}=1$, i.e. $\zeta=e^{2 \pi i k / n}$ for some $k \in \mathbb{Z}$. An n-th root of unity is primitive if $\zeta^{k} \neq 1$ for all $k=1, \ldots, n-1$. Let $f_{n}(z)$ be the function that has as its zeros all primitive n-th roots of unity. Prove that

$$
f_{n}(z)=\prod_{k \mid n}\left(z^{k}-1\right)^{\mu\left(\frac{n}{k}\right)} .
$$

Problem 5. Let T_{n} be the number of triangulations of a convex $(n+2)$-gon into n triangles by $n-1$ diagonals that do not intersect in their interiors. Find and prove a formula for T_{n}.

