Problem Set 6

Due: Tuesday, February 17 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1–10.

Problem 1. Determine the Jordan canonical form of the $n \times n$ matrix A with 1's on the diagonal and 2's on the superdiagonal.

	Γ1	2	0	•••	•••	0
A :=	0	1	2	0	• • •	0
	0	0	1	2	·.	÷
	:	۰.	۰.	۰.	·	÷
	0	0	• • •	0	1	2
	0	0	•••	0	0	1_

- **Problem 2.** Prove that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the $n \times n$ matrix A then $\lambda_1^k, \ldots, \lambda_n^k$ are the eigenvalues of A^k for any $k \ge 0$.
- **Problem 3.** Prove that any matrix A is similar to its transpose A^T .
- **Problem 4.** Prove that an $n \times n$ matrix A with entries from \mathbb{C} satisfying $A^3 = A$ can be diagonalized. Is the same statement true over any field F?
- **Problem 5.** Prove that there are no 3×3 matrices A over \mathbb{Q} with $A^8 = I$ but $A^4 \neq I$.

Problem 6. Show that the following matrices are similar in $M_p(\mathbb{F}_p)$:

<u>[0 0 0 0 1]</u>	$1 1 0 \cdots 0 0$	
	$0 \ 1 \ 1 \ \cdots \ 0 \ 0$	
	$0 0 1 \cdots 0 0$	
$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$ and		
		l
$\begin{bmatrix} 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$	
	$ 0 \ 0 \ 0 \ \cdots \ 0 \ 1$	

- **Problem 7.** Determine the Jordan canonical form for the $n \times n$ matrix over \mathbb{F}_p whose entries are all equal to 1 (the answer depends on whether or not p divides n).
- **Problem 8.** Let A be an $n \times n$ matrix over a field F. For $0 \le i \le n$, let d_i be the g.c.d. of the determinants of all the $i \times i$ minors of xI A (take the 0×0 minor to be 1). Prove that the *i*th element along the diagonal of the Smith Normal Form for A is d_i/d_{i-1} . This gives the invariant factors of A. (Hint: Show that these g.c.d.s do not change under the following row and column operations: (1) Add a multiple of one row to another row, (2) Swap two rows, (3) Rescale a row by an element of F; column operations are analogous.)
- **Problem 9.** Determine the 1-dimensional representations of the dihedral group D_{4n} of order 4n. (This means giving a list of 1-dimensional representations, showing that each pair of these is nonequivalent, and showing that any 1-dimensional representation belongs to the list; note that for 1×1 matrices, conjugation does nothing, so showing two 1-dimensional representations are nonequivalent only requires showing they are not equal.)

Problem 10. Let Z_n be the cyclic group of order n. Use rational canonical form to determine the irreducible $\mathbb{F}_p Z_4$ -modules. Here \mathbb{F}_p denotes the field with p elements where p is a prime. (Hint: You can use the fact that the group \mathbb{F}_p^{\times} is the cyclic group of order p-1.)