Problem Set 6

Due: Tuesday, February 17 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1-10.

Problem 1. Determine the Jordan canonical form of the $n \times n$ matrix A with 1 's on the diagonal and 2's on the superdiagonal.

$$
A:=\left[\begin{array}{cccccc}
1 & 2 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 2 & 0 & \cdots & 0 \\
0 & 0 & 1 & 2 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 2 \\
0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right]
$$

Problem 2. Prove that if $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the $n \times n$ matrix A then $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$ are the eigenvalues of A^{k} for any $k \geq 0$.

Problem 3. Prove that any matrix A is similar to its transpose A^{T}.
Problem 4. Prove that an $n \times n$ matrix A with entries from \mathbb{C} satisfying $A^{3}=A$ can be diagonalized. Is the same statement true over any field F ?

Problem 5. Prove that there are no 3×3 matrices A over \mathbb{Q} with $A^{8}=I$ but $A^{4} \neq I$.
Problem 6. Show that the following matrices are similar in $M_{p}\left(\mathbb{F}_{p}\right)$:

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right] \text { and }\left[\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

Problem 7. Determine the Jordan canonical form for the $n \times n$ matrix over \mathbb{F}_{p} whose entries are all equal to 1 (the answer depends on whether or not p divides n).

Problem 8. Let A be an $n \times n$ matrix over a field F. For $0 \leq i \leq n$, let d_{i} be the g.c.d. of the determinants of all the $i \times i$ minors of $x I-A$ (take the 0×0 minor to be 1). Prove that the i th element along the diagonal of the Smith Normal Form for A is d_{i} / d_{i-1}. This gives the invariant factors of A. (Hint: Show that these g.c.d.s do not change under the following row and column operations: (1) Add a multiple of one row to another row, (2) Swap two rows, (3) Rescale a row by an element of F; column operations are analogous.)

Problem 9. Determine the 1-dimensional representations of the dihedral group $D_{4 n}$ of order $4 n$. (This means giving a list of 1-dimensional representations, showing that each pair of these is nonequivalent, and showing that any 1-dimensional representation belongs to the list; note that for 1×1 matrices, conjugation does nothing, so showing two 1 -dimensional representations are nonequivalent only requires showing they are not equal.)

Problem 10. Let Z_{n} be the cyclic group of order n. Use rational canonical form to determine the irreducible $\mathbb{F}_{p} Z_{4}$-modules. Here \mathbb{F}_{p} denotes the field with p elements where p is a prime. (Hint: You can use the fact that the group \mathbb{F}_{p}^{\times}is the cyclic group of order $p-1$.)

