Problem Set 6

Due: Tuesday, November 1

Problem 1. We want to place the integers $1,2, \ldots, r$ into a circular array with n positions so that they occur in order, clockwise, and such that consecutive integers (including the pair ($r, 1$)) are not adjacent. Arrangements which are rotations of each other are considered the same. In how many ways can this be done?

Problem 2. Let A_{n} be the $n \times n$ matrix whose (i, j) entry is $\binom{i}{j}$, with rows and columns numbered starting from 0 . So, for example,

$$
A_{5}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 \\
1 & 4 & 6 & 4 & 1
\end{array}\right)
$$

Compute A_{2}^{-1}, A_{3}^{-1} and A_{4}^{-1}. Find and prove a formula for A_{n}^{-1}.
Problem 3. A star-cutset of G is a vertex cut S containing a vertex x adjacent to all of $S-\{x\}$. Find an imperfect graph G having a star-cutset C such that the C-lobes of G are perfect graphs.

Problem 4. Let \mathbb{F}_{p} be the finite field with p elements for some prime p and let $\mathbb{F}_{p}[x]$ be the ring of polynomials in the variable x with coefficients in \mathbb{F}_{p}. How many monic polynomials of degree n are there in $\mathbb{F}_{p}[x]$ that do not take on the value 0 for $x \in \mathbb{F}_{p}$? (A polynomial is monic if it is of the form $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.)

Problem 5. Suppose that $G=G_{1} \cup G_{2}$, that $G_{1} \cap G_{2}$ is a clique, and that G_{1} and G_{2} are perfect. Prove that G is perfect.

