Problem Set 5

Due: Tuesday, February 10 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1–10.

Problem 1. Let A_1, \ldots, A_n be *R*-modules and let B_i be a submodule of A_i for each $i = 1, \ldots, n$. Prove that

 $(A_1 \oplus \cdots \oplus A_n)/(B_1 \oplus \cdots \oplus B_n) \cong (A_1/B_1) \oplus \cdots \oplus (A_n/B_n).$

- **Problem 2.** Prove that two 3×3 matrices over a field F are similar if and only if they have the same characteristic and same minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.
- **Problem 3.** Find the rational canonical forms of the following matrices over \mathbb{Q} :

$\begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix}$	-1 0 0	$\begin{bmatrix} -1\\0\\0 \end{bmatrix}$	$, \begin{bmatrix} c \\ 0 \\ -1 \end{bmatrix}$	$\begin{array}{c} 0 \\ c \\ 1 \end{array}$	$\begin{bmatrix} -1\\1\\c \end{bmatrix},$	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $	0 0 1 1	, and	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array} $	0 0 0 1	
L			L		- J	0	0	0	1		0	0	0	1	ĺ

Problem 4. Find all similarity classes of 3×3 matrices A over \mathbb{F}_2 satisfying $A^6 = I$.

- **Problem 5.** Determine up to similarity all 2×2 rational matrices A (i.e., $A \in M_2(\mathbb{Q})$) such that $A^4 = I$ and $A^k \neq I$ for k < 4. Do the same if the matrix has entries from \mathbb{C} .
- **Problem 6.** Let R be any commutative ring, let V be an R-module, and let $x_1, x_2, \ldots, x_n \in V$. Suppose $A \in M_n(R)$ and

$$A\begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix} = \mathbf{0}.$$

Prove that $(\det A)x_i = 0$ for all $i \in \{1, 2, \dots, n\}$.

- **Problem 7.** Determine representatives for the conjugacy classes for $GL_3(\mathbb{F}_2)$.
- **Problem 8.** Find an integral domain R and an R-module M such that M is torsion-free and M is not a free module.
- **Problem 9.** Show that the \mathbb{Z} -module \mathbb{Q} is torsion-free but not free. Why does this not contradict the Structure Theorem proven in class?
- **Problem 10.** Let M be a finitely generated module over a PID R. Show that any submodule of M is finitely generated. (Do not use the Structure Theorem since we needed this to prove the Structure Theorem.)