Problem Set 5

Due: Tuesday, February 10 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1-10.

Problem 1. Let A_{1}, \ldots, A_{n} be R-modules and let B_{i} be a submodule of A_{i} for each $i=1, \ldots, n$. Prove that

$$
\left(A_{1} \oplus \cdots \oplus A_{n}\right) /\left(B_{1} \oplus \cdots \oplus B_{n}\right) \cong\left(A_{1} / B_{1}\right) \oplus \cdots \oplus\left(A_{n} / B_{n}\right) .
$$

Problem 2. Prove that two 3×3 matrices over a field F are similar if and only if they have the same characteristic and same minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.

Problem 3. Find the rational canonical forms of the following matrices over \mathbb{Q} :

$$
\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
c & 0 & -1 \\
0 & c & 1 \\
-1 & 1 & c
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, and }\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

Problem 4. Find all similarity classes of 3×3 matrices A over \mathbb{F}_{2} satisfying $A^{6}=I$.
Problem 5. Determine up to similarity all 2×2 rational matrices A (i.e., $A \in M_{2}(\mathbb{Q})$) such that $A^{4}=I$ and $A^{k} \neq I$ for $k<4$. Do the same if the matrix has entries from \mathbb{C}.

Problem 6. Let R be any commutative ring, let V be an R-module, and let $x_{1}, x_{2}, \ldots, x_{n} \in V$. Suppose $A \in M_{n}(R)$ and

$$
A\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\mathbf{0}
$$

Prove that $(\operatorname{det} A) x_{i}=0$ for all $i \in\{1,2, \ldots, n\}$.
Problem 7. Determine representatives for the conjugacy classes for $G L_{3}\left(\mathbb{F}_{2}\right)$.
Problem 8. Find an integral domain R and an R-module M such that M is torsion-free and M is not a free module.

Problem 9. Show that the \mathbb{Z}-module \mathbb{Q} is torsion-free but not free. Why does this not contradict the Structure Theorem proven in class?

Problem 10. Let M be a finitely generated module over a PID R. Show that any submodule of M is finitely generated. (Do not use the Structure Theorem since we needed this to prove the Structure Theorem.)

