Problem Set 4

Due: Tuesday, February 3 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1-10.

Problem 1. For $a, b \in R$, where R is a commutative ring and a, b are nonzero, a least common multiple of a and b is an element c of R such that $a|c, b| c$, and if ($a \mid c^{\prime}$ and $b \mid c^{\prime}$) then $c \mid c^{\prime}$. Prove that any two nonzero elements of a PID have a least common multiple.

Problem 2. Let R be an integral domain. Prove that if the following two conditions hold then R is a PID:
(i) for any $a, b \in R$, there is a $d \in R$ such that $(a, b)=(d)$, and
(ii) if a_{1}, a_{2}, \ldots are nonzero elements of R such that $a_{i+1} \mid a_{i}$ for all i, then there is a positive integer N such that a_{n} is a unit times a_{N} for all $n \geq N$.

Problem 3. Let F be a field and $R=F[x, y]$. Every ideal of R is finitely generated (we have not proved this, but you can use it for this problem). For a finitely generated ideal I, let $s(I)$ be the smallest possible size of a generating set of I. Determine

$$
\max \{s(I) \mid I \text { is an ideal of } R\} .
$$

(Define max of a set to be ∞ if the set is unbounded from above.)
Problem 4. Let $R=\mathbb{Z}$. Use the row and column operations discussed in the proof in class to
bring the matrix $A=\left[\begin{array}{ccc}2 & 4 & 4 \\ -4 & 8 & 8 \\ 3 & 2 & 4\end{array}\right]$ into the form $\left[\begin{array}{ccccccc}a_{1} & 0 & \cdots & \cdots & 0 & \cdots & 0 \\ 0 & a_{2} & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & a_{m} & 0 & \cdots & 0\end{array}\right]$ such that $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$ and $m \leq 3$.

Problem 5. Let R be a ring. Show that R is a field if and only if every R-module has a basis.
Problem 6. Let M be a module over the integral domain R.
(a) Let $x \in M$ be a torsion element. Show that x is linearly dependent. Conclude that the rank of $\operatorname{Tor}(M)$ is 0 , so that in particular any torsion R-module has rank 0 .
(b) Show that the rank of M is the same as the rank of the (torsion free) quotient $M /$ Tor M.

Problem 7. Let M be a module over the integral domain R. Suppose that M has rank n and that x_{1}, \ldots, x_{n} is any maximal set of linearly independent elements of M. Let $N=R x_{1}+$ $\cdots+R x_{n}$ be the submodule generated by x_{1}, \ldots, x_{n}. Prove that N is isomorphic to R^{n} and that the quotient M / N is a torsion R-module.

Problem 8. Let R be a commutative ring and let M be the free R-module R^{n}. Show that if the elements $x_{1}, \ldots, x_{n} \in M$ are linearly independent, then they form a basis of M.

Problem 9. Let R be a commutative ring and let M be the free R-module R^{n}. Show that if the elements $x_{1}, \ldots, x_{n} \in M$ generate M, then they form a basis of M.

Problem 10. Let R be a commutative ring and let b_{1}, \ldots, b_{n} be a basis of R^{n}. Let $C=\left[c_{i j}\right]$ be an $n \times n$ matrix with coefficients in R, i.e., $C \in M_{n}(R)$. Suppose that $\operatorname{det}(C)$ is a unit in R.
(a) Show that C is a unit in $M_{n}(R)$.
(b) For $i=1, \ldots, n$, let $d_{i}=\sum_{j} c_{i j} b_{j}$. Show that the elements d_{1}, \ldots, d_{n} form a basis of R^{n}.

