Problem Set 4

Due: Tuesday, February 3 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Turn in Problems 1–10.

- **Problem 1.** For $a, b \in R$, where R is a commutative ring and a, b are nonzero, a *least common* multiple of a and b is an element c of R such that $a \mid c, b \mid c$, and if $(a \mid c' \text{ and } b \mid c')$ then $c \mid c'$. Prove that any two nonzero elements of a PID have a least common multiple.
- **Problem 2.** Let R be an integral domain. Prove that if the following two conditions hold then R is a PID:
 - (i) for any $a, b \in R$, there is a $d \in R$ such that (a, b) = (d), and
 - (ii) if a_1, a_2, \ldots are nonzero elements of R such that $a_{i+1} \mid a_i$ for all i, then there is a positive integer N such that a_n is a unit times a_N for all $n \ge N$.
- **Problem 3.** Let F be a field and R = F[x, y]. Every ideal of R is finitely generated (we have not proved this, but you can use it for this problem). For a finitely generated ideal I, let s(I) be the smallest possible size of a generating set of I. Determine

 $\max\{s(I) \mid I \text{ is an ideal of } R\}.$

(Define max of a set to be ∞ if the set is unbounded from above.)

Problem 4. Let $R = \mathbb{Z}$. Use the row and column operations discussed in the proof in class to

				$ a_1 $	0	• • •	• • •	0	• • •	- 01	
bring the matrix $A = \begin{bmatrix} 2 \\ -4 \\ 3 \end{bmatrix}$	4	4		0	a_2			0		0	
bring the matrix $A = \begin{vmatrix} -4 \end{vmatrix}$	8	8	into the form	.							such that
3	2	4			:	•	:	:	:	:	
E.		_			•••	0	a_m	0	•••	0	

 $a_1 \mid a_2 \mid \cdots \mid a_m \text{ and } m \leq 3.$

Problem 5. Let R be a ring. Show that R is a field if and only if every R-module has a basis.

- **Problem 6.** Let M be a module over the integral domain R.
 - (a) Let $x \in M$ be a torsion element. Show that x is linearly dependent. Conclude that the rank of Tor(M) is 0, so that in particular any torsion R-module has rank 0.
 - (b) Show that the rank of M is the same as the rank of the (torsion free) quotient $M/\operatorname{Tor} M$.
- **Problem 7.** Let M be a module over the integral domain R. Suppose that M has rank n and that x_1, \ldots, x_n is any maximal set of linearly independent elements of M. Let $N = Rx_1 + \cdots + Rx_n$ be the submodule generated by x_1, \ldots, x_n . Prove that N is isomorphic to R^n and that the quotient M/N is a torsion R-module.
- **Problem 8.** Let R be a commutative ring and let M be the free R-module R^n . Show that if the elements $x_1, \ldots, x_n \in M$ are linearly independent, then they form a basis of M.
- **Problem 9.** Let R be a commutative ring and let M be the free R-module R^n . Show that if the elements $x_1, \ldots, x_n \in M$ generate M, then they form a basis of M.

Problem 10. Let R be a commutative ring and let b_1, \ldots, b_n be a basis of R^n . Let $C = [c_{ij}]$ be an $n \times n$ matrix with coefficients in R, i.e., $C \in M_n(R)$. Suppose that $\det(C)$ is a unit in R.

- (a) Show that C is a unit in $M_n(R)$. (b) For i = 1, ..., n, let $d_i = \sum_j c_{ij} b_j$. Show that the elements $d_1, ..., d_n$ form a basis of $\mathbb{R}^{n}.$