Problem Set 3

Due: Tuesday, January 27 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Read 10.3 Problem 27. Turn in Problems 1-10.

Problem 1. An element $e \in R$ is called a central idempotent if $e^{2}=e$ and $e r=r e$ for all $r \in R$. If e is a central idempotent in R, prove that $M=e M \oplus(1-e) M$.

Problem 2. An element m of the R-module M is called a torsion element if $r m=0$ for some nonzero element $r \in R$. The set of torsion elements is denoted

$$
\operatorname{Tor}(M)=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\} .
$$

(a) Prove that if R is an integral domain then $\operatorname{Tor}(M)$ is a submodule of M (called the torsion submodule of M).
(b) Give an example of a ring R and an R-module M such that $\operatorname{Tor}(M)$ is not a submodule.
(c) If R has zero divisors show that every nonzero R-module has nonzero torsion elements.

Problem 3. Let $\phi: M \rightarrow N$ be an R-module homomorphism. Prove that $\phi(\operatorname{Tor}(M)) \subseteq \operatorname{Tor}(N)$.
Problem 4. A torsion R-module is an R-module M such that $\operatorname{Tor}(M)=M$. For an R-module M, the annihilator of M in R is

$$
\operatorname{Ann}_{R}(M):=\{r \in R \mid r m=0 \text { for all } m \in M\} .
$$

Give an example of an integral domain R and a nonzero torsion R-module M such that $\operatorname{Ann}_{R}(M)=0$. Prove that if N is a finitely generated torsion R-module then $\operatorname{Ann}_{R}(N) \neq 0$.

Problem 5. Let $R=\mathbb{Z}[x]$ and let $M=(2, x)$ be the ideal generated by 2 and x, considered as a submodule of R. Show that $\{2, x\}$ is not a basis of M. Show that the rank of M is 1 but that M is not free of rank 1 .

Problem 6. Let \mathbb{F}_{2} denote the field with 2 elements. Determine (with proof) which of the following pairs of rings are isomorphic:

- $\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+x+1\right)$
- $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$
- $\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$.

Avoid using facts about finite fields we have not proved, though you can use them if you prove them.

Problem 7. Determine all nilpotent elements of $M_{2}(\mathbb{C})$.
Problem 8. Let F be a field. Give a simple description of the set of zero divisors of $M_{n}(F)$ in terms of concepts from linear algebra.

Problem 9. Show that if $R=\mathbb{Z}, I=\mathbb{Z}_{>0}$, and $M_{i}=\mathbb{Z} / i \mathbb{Z}$ for each $i \in I$, then $\bigoplus_{i \in I} M_{i}$ is not isomorphic to $\prod_{i \in I} M_{i}$.

Problem 10. Let R be a commutative ring. Prove that $R^{n} \cong R^{m}$ if and only if $n=m$, i.e., two free R-modules of finite rank are isomorphic if and only if they have the same rank.

