Problem Set 3

Due: Tuesday, September 27

Problem 1. Find (with proof) the smallest 3-regular simple graph having connectivity 1.

- **Problem 2.** Let G be a bipartite graph with partite sets X and Y. Let H be the graph obtained from G by adding one vertex to Y if |V(G)| is odd and then adding edges to make Y a clique.
 - a) Prove that G has a matching of size |X| if and only if H has a 1-factor.
 - b) Prove that if G satisfies Hall's Condition $(|N(S)| \ge |S| \text{ for all } S \subseteq X)$, then H satisfies Tutte's Condition $(o(H T) \le |T| \text{ for all } T \subseteq V(H))$.
 - c) Use parts (a) and (b) to obtain Hall's Theorem from Tutte's Theorem

Problem 3. For each k > 1, construct a k-regular simple graph having no 1-factor.

Problem 4. Use the König-Egerváry Theorem to prove that every bipartite graph G has a matching of size at least $|E(G)|/\Delta(G)$, where $\Delta(G)$ is the maximum degree of a vertex in G. Use this to conclude that every subgraph of $K_{n,n}$ with more than (k-1)n edges has a matching of size at least k.

Problem 5. Use Menger's Theorem to prove that $\kappa(G) = \kappa'(G)$ when G is 3-regular.