Problem Set 2

Due: Tuesday, January 20 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Do Problem A but do not turn it in. Turn in Problems 1-10.

Problem A. Decide which of the following are ring homomorphisms from $M_{2}(\mathbb{Z})$ to \mathbb{Z} :
(a) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto a \quad$ (projection onto the 1,1 entry)
(b) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto a+d \quad$ (the trace of the matrix)
(c) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto a d-b c$ (the determinant of the matrix).

Problem 1. For the following two rings, give an example of a prime ideal that is not maximal (and prove that your answer is correct):
(a) $\mathbb{Z}[x]$
(b) $F[x, y]$ for a field F.

Problem 2. Prove that R is a division ring if and only if its only left ideals are (0) and R. (The analogous result holds when "left" is replaced by "right".)

Problem 3. Let R be a commutative ring. Prove that the principal ideal generated by x in the polynomial ring $R[x]$ is a prime ideal if and only if R is an integral domain. Prove that (x) is a maximal ideal if and only if R is a field.

Problem 4. Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z} / m \mathbb{Z}) \cong \mathbb{Z} /(n, m) \mathbb{Z}$.
Problem 5. Let R be a commutative ring. Prove that $\operatorname{Hom}_{R}(R, M)$ and M are isomorphic as left R-modules.

Problem 6. Let R be commutative ring. Show that an R-module M is irreducible if and only if M is isomorphic (as an R-module) to R / I where I is a maximal ideal of R.

Problem 7. Show that if M_{1} and M_{2} are irreducible R-modules, then any nonzero R-module homomorphism from M_{1} to M_{2} is an isomorphism. Deduce that if M is irreducible then $E n d_{R}(M)$ is a division ring (this result is called Schur's Lemma).

Problem 8.

(a) Let $R=M_{n}(\mathbb{C})$. Let $V=\mathbb{C}^{n}$ considered as a left R-module in the natural way, i.e., the action of a matrix $A \in M_{n}(\mathbb{C})$ on a column vector \mathbf{x} of length n is equal to the product $A \mathrm{x}$. Determine the submodules of V.
(b) Now consider $V=\mathbb{C}^{n}$ as a left $\mathbb{C} \mathcal{S}_{n}$-module, where the action is given by $\pi e_{i}=e_{\pi(i)}$ for $\pi \in \mathcal{S}_{n}$, and where $e_{1}, e_{2}, \ldots, e_{n}$ denotes the standard basis of \mathbb{C}^{n}. Determine the submodules of V.

Problem 9. Find a ring R and a left R-module M such that M cannot be written as a direct sum of simple modules.

Problem 10. Determine all 2-dimensional \mathbb{C}-algebras. This means (1) give a list of nonisomorphic 2 -dimensional \mathbb{C}-algebras, and (2) show that any 2 -dimensional \mathbb{C}-algebra is isomorphic to one on the list.

