Problem Set 2

Due: Tuesday, January 20 at the beginning of class

We will assume rings have identity and ring homomorphisms are unital (send 1 to 1) unless stated otherwise. Do Problem A but do not turn it in. Turn in Problems 1–10.

Problem A. Decide which of the following are ring homomorphisms from $M_2(\mathbb{Z})$ to \mathbb{Z} :

(a)
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto a$$
 (projection onto the 1,1 entry)
(b) $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto a + d$ (the *trace* of the matrix)
(c) $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto ad - bc$ (the *determinant* of the matrix).

- **Problem 1.** For the following two rings, give an example of a prime ideal that is not maximal (and prove that your answer is correct):
 - (a) $\mathbb{Z}[x]$
 - (b) F[x, y] for a field F.
- **Problem 2.** Prove that R is a division ring if and only if its only left ideals are (0) and R. (The analogous result holds when "left" is replaced by "right".)
- **Problem 3.** Let R be a commutative ring. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal if and only if R is an integral domain. Prove that (x) is a maximal ideal if and only if R is a field.
- **Problem 4.** Prove that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n, m)\mathbb{Z}$.
- **Problem 5.** Let R be a commutative ring. Prove that $\operatorname{Hom}_R(R, M)$ and M are isomorphic as left R-modules.
- **Problem 6.** Let R be commutative ring. Show that an R-module M is irreducible if and only if M is isomorphic (as an R-module) to R/I where I is a maximal ideal of R.
- **Problem 7.** Show that if M_1 and M_2 are irreducible *R*-modules, then any nonzero *R*-module homomorphism from M_1 to M_2 is an isomorphism. Deduce that if *M* is irreducible then $End_R(M)$ is a division ring (this result is called Schur's Lemma).

Problem 8.

- (a) Let $R = M_n(\mathbb{C})$. Let $V = \mathbb{C}^n$ considered as a left *R*-module in the natural way, i.e., the action of a matrix $A \in M_n(\mathbb{C})$ on a column vector \mathbf{x} of length *n* is equal to the product $A\mathbf{x}$. Determine the submodules of *V*.
- (b) Now consider $V = \mathbb{C}^n$ as a left $\mathbb{C}S_n$ -module, where the action is given by $\pi e_i = e_{\pi(i)}$ for $\pi \in S_n$, and where e_1, e_2, \ldots, e_n denotes the standard basis of \mathbb{C}^n . Determine the submodules of V.
- **Problem 9.** Find a ring R and a left R-module M such that M cannot be written as a direct sum of simple modules.

- $\mathbf{2}$
- **Problem 10.** Determine all 2-dimensional C-algebras. This means (1) give a list of nonisomorphic 2-dimensional C-algebras, and (2) show that any 2-dimensional C-algebra is isomorphic to one on the list.