Problem Set 2

Due: Tuesday, September 20

Problem 1. Let S be the set $\{1,2, \ldots, m n\}$. Partition S into m sets A_{1}, \ldots, A_{m} of size n each. Also partition S into m sets B_{1}, \ldots, B_{m} of size n each. Show that the A_{i} can be renumbered so that $A_{i} \cap B_{i}$ is non-empty for every i.

Problem 2. For a list of trails T_{1}, \ldots, T_{m}, let $L\left(T_{1}, \ldots, T_{m}\right)$ be the number of trails T_{i} that are not closed. Let $\tau(G)$ be the smallest value of $L\left(T_{1}, \ldots, T_{m}\right)$ over all lists of trails T_{1}, \ldots, T_{m} such that their edge sets partition $E(G)$ (i.e. each edge of G appears in exactly one trail). For example, if G is a cycle with an extra edge, then $\tau(G)=1$. Determine a simple expression for $\tau(G)$ in terms of the vertex degrees of G (and prove that this is correct).

Problem 3. For a spanning tree T in a weighted graph, let $m(T)$ denote the maximum among the weights of the edges in T. Let x denote the minimum of $m(T)$ over all spanning trees of a weighted graph G. Prove that if T is a spanning tree in G with minimum total weight, then $m(T)=x$ (in other words, T also minimizes the maximum weight). Construct an example to show that the converse is false. (Comment: A tree that minimizes the maximum weight is called a bottleneck or minimax spanning tree.)

Problem 4. Let T, T^{\prime} be two spanning trees of a connected graph G. For $e \in E(T)-E\left(T^{\prime}\right)$, prove that there is an edge $e^{\prime} \in E\left(T^{\prime}\right)-E(T)$ such that $T^{\prime}+e-e^{\prime}$ and $T-e+e^{\prime}$ are both spanning trees of G.

Problem 5. Let G be a bipartite graph with vertex sets V_{1} and V_{2}. Let A be the set of vertices of maximal degree. Show that there is a matching in G that covers A.

