Problem Set 11

Do not turn in

Problem 1. Let G and H be subgraphs of some graph, possibly overlapping.
a) Prove that $\chi(G \cup H ; k)=\frac{\chi(G ; k) \chi(H ; k)}{\chi(G \cap H ; k)}$ when $G \cap H$ is a complete graph.
b) Show that the formula may fail when $G \cap H$ is not a complete graph.

Problem 2. Prove that the chromatic polynomial of an n-vertex graph has no real root larger than $n-1$.

Problem 3. Prove that $\chi(G ; x+y)=\sum_{U \subseteq V(G)} \chi(G[U] ; x) \chi(G[\bar{U}] ; y)$.
Problem 4. Let D be an acyclic orientation of G, and let f be a map from $V(G)$ to $[k]$. We say that (D, f) is a compatible pair if $u \rightarrow v$ in D implies $f(u) \leq f(v)$. Let $\eta(G ; k)$ be the number of compatible pairs. Prove that $\eta(G ; k)=(-1)^{n(G)} \chi(G ; k)$.

Problem 5. A set $B \subseteq E(G)$ is a bicycle if $B=[S, \bar{S}]$ is an edge cut and the subgraph corresponding to B has even vertex degrees. Prove that a connected graph G has no bicycles if and only if it has an odd number of spanning trees.

