Problem Set 11

Do not turn in

Problem 1. Let G and H be subgraphs of some graph, possibly overlapping.

- a) Prove that $\chi(G \cup H; k) = \frac{\chi(G;k)\chi(H;k)}{\chi(G \cap H;k)}$ when $G \cap H$ is a complete graph.
- b) Show that the formula may fail when $G \cap H$ is not a complete graph.
- **Problem 2.** Prove that the chromatic polynomial of an *n*-vertex graph has no real root larger than n-1.
- **Problem 3.** Prove that $\chi(G; x + y) = \sum_{U \subseteq V(G)} \chi(G[U]; x) \chi(G[\overline{U}]; y).$
- **Problem 4.** Let *D* be an acyclic orientation of *G*, and let *f* be a map from V(G) to [k]. We say that (D, f) is a *compatible pair* if $u \to v$ in *D* implies $f(u) \leq f(v)$. Let $\eta(G; k)$ be the number of compatible pairs. Prove that $\eta(G; k) = (-1)^{n(G)}\chi(G; k)$.
- **Problem 5.** A set $B \subseteq E(G)$ is a *bicycle* if $B = [S, \overline{S}]$ is an edge cut and the subgraph corresponding to B has even vertex degrees. Prove that a connected graph G has no bicycles if and only if it has an odd number of spanning trees.