Problem Set 10

Optional problems, do not turn in.

Problem 1. Prove that if M is a cyclic R-module then $T(M)=S(M)$, i.e., the tensor algebra $T(M)$ is commutative.

Problem 2. Let F be a field in which $-1 \neq 1$ and let V be a vector space over F. Prove that $V \otimes_{F} V \cong S^{2}(V) \oplus \bigwedge^{2}(V)$.

Problem 3. Let G be a finite group and let V be a finite-dimensional $\mathbb{C} G$-module. Recall from the previous problem set that $V \otimes_{\mathbb{C}} V$ is a $\mathbb{C} G$-module.
(a) Show that $S^{2}(V)$ and $\bigwedge^{2}(V)$ are $\mathbb{C} G$-submodules of $V \otimes_{\mathbb{C}} V$.
(b) Prove that $\chi_{S^{2}(V)}(g)=\frac{1}{2}\left(\chi_{V}(g)^{2}+\chi_{V}\left(g^{2}\right)\right)$ for all $g \in G$.
(c) Prove that $\chi_{\Lambda^{2}(V)}(g)=\frac{1}{2}\left(\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)\right)$ for all $g \in G$.

Problem 4. Let V be the 4 -dimensional defining representation of \mathcal{S}_{4} over \mathbb{C}. Determine the decomposition of $\bigwedge^{k}(V)$ into irreducibles for all k.

Problem 5. Let F be a field and let U, V, W be finite-dimensional F-vector spaces. Let $\phi: U \rightarrow V$ and $\psi: V \rightarrow W$ be linear maps. Recall that $T(\phi)$ and $\Lambda(\phi)$ denote the induced maps $T(\phi): T(U) \rightarrow T(V)$ and $\bigwedge(\phi): \bigwedge(U) \rightarrow \bigwedge(V)$.
(a) Prove that $T(\psi) \circ T(\phi)=T(\psi \circ \phi)$.
(b) Prove that $\Lambda(\psi) \circ \bigwedge(\phi)=\bigwedge(\psi \circ \phi)$.
(c) Deduce that if A and B are $n \times n$ matrices then $\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)$.

