Problem Set 10

Optional problems, do not turn in.

- **Problem 1.** Prove that if M is a cyclic R-module then T(M) = S(M), i.e., the tensor algebra T(M) is commutative.
- **Problem 2.** Let F be a field in which $-1 \neq 1$ and let V be a vector space over F. Prove that $V \otimes_F V \cong S^2(V) \oplus \bigwedge^2(V).$
- **Problem 3.** Let G be a finite group and let V be a finite-dimensional $\mathbb{C}G$ -module. Recall from the previous problem set that $V \otimes_{\mathbb{C}} V$ is a $\mathbb{C}G$ -module.

 - (a) Show that $S^2(V)$ and $\bigwedge^2(V)$ are $\mathbb{C}G$ -submodules of $V \otimes_{\mathbb{C}} V$. (b) Prove that $\chi_{S^2(V)}(g) = \frac{1}{2}(\chi_V(g)^2 + \chi_V(g^2))$ for all $g \in G$. (c) Prove that $\chi_{\bigwedge^2(V)}(g) = \frac{1}{2}(\chi_V(g)^2 \chi_V(g^2))$ for all $g \in G$.
- **Problem 4.** Let V be the 4-dimensional defining representation of S_4 over \mathbb{C} . Determine the decomposition of $\bigwedge^k(V)$ into irreducibles for all k.
- **Problem 5.** Let F be a field and let U, V, W be finite-dimensional F-vector spaces. Let $\phi: U \to V$ and $\psi: V \to W$ be linear maps. Recall that $T(\phi)$ and $\Lambda(\phi)$ denote the induced maps $T(\phi): T(U) \to T(V) \text{ and } \bigwedge(\phi): \bigwedge(U) \to \bigwedge(V).$
 - (a) Prove that $T(\psi) \circ T(\phi) = T(\psi \circ \phi)$.
 - (b) Prove that $\bigwedge(\psi) \circ \bigwedge(\phi) = \bigwedge(\psi \circ \phi)$.
 - (c) Deduce that if A and B are $n \times n$ matrices then det(A) det(B) = det(AB).