Problem Set 10

Due: Tuesday, December 6

Problem 1. Prove that a d-regular simple graph G has a decomposition into copies of $K_{1, d}$ if and only if it is bipartite. (A decomposition means that the edge sets of the copies of the $K_{1, d}$ form a partition of $E(G)$.)

Problem 2. A one-distance set of \mathbb{R}^{n} is a set of points in \mathbb{R}^{n} such that the distance between any two of them is the same. Prove that a one-distance set of \mathbb{R}^{n} has at most $n+1$ points.

Problem 3. Determine the number of spanning trees of the k-cube B_{k}. The k-cube is a graph with 2^{k} vertices and can be defined as the k-fold cartesian product of the edge $B_{1}=K_{2}$. The cartesian product of graphs G and H, written $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting (u, v) adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if (1) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or $(2) v=v^{\prime}$ and $u u^{\prime} \in E(G)$.

Problem 4. Let Q be an $n \times n$ matrix such that the sum of the entries in any row is 0 and the sum of the entries in any column is zero. Let μ_{1}, \ldots, μ_{n} be the eigenvalues of Q, labeled so that $\mu_{n}=0$. Show that any principal cofactor of Q is equal to $\frac{1}{n} \mu_{1} \cdots \mu_{n-1}$.

Problem 5. Let T be a tree. Prove that the independence number $\alpha(T)$ is the number of nonnegative eigenvalues of T. (Hint: See Theorem 8.6.20 in West.)

