Problem Set 10

Due: Tuesday, December 6

- **Problem 1.** Prove that a *d*-regular simple graph G has a decomposition into copies of $K_{1,d}$ if and only if it is bipartite. (A decomposition means that the edge sets of the copies of the $K_{1,d}$ form a partition of E(G).)
- **Problem 2.** A one-distance set of \mathbb{R}^n is a set of points in \mathbb{R}^n such that the distance between any two of them is the same. Prove that a one-distance set of \mathbb{R}^n has at most n + 1 points.
- **Problem 3.** Determine the number of spanning trees of the k-cube B_k . The k-cube is a graph with 2^k vertices and can be defined as the k-fold cartesian product of the edge $B_1 = K_2$. The *cartesian product* of graphs G and H, written $G \Box H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting (u, v) adjacent to (u', v') if and only if $(1) \ u = u'$ and $vv' \in E(H)$, or $(2) \ v = v'$ and $uu' \in E(G)$.
- **Problem 4.** Let Q be an $n \times n$ matrix such that the sum of the entries in any row is 0 and the sum of the entries in any column is zero. Let μ_1, \ldots, μ_n be the eigenvalues of Q, labeled so that $\mu_n = 0$. Show that any principal cofactor of Q is equal to $\frac{1}{n}\mu_1 \cdots \mu_{n-1}$.
- **Problem 5.** Let T be a tree. Prove that the independence number $\alpha(T)$ is the number of nonnegative eigenvalues of T. (Hint: See Theorem 8.6.20 in West.)