Math 201 - Midterm 1 Winter 2015
 Solutions

Name:

Question	Points	Score
1	10	
2	8	
3	8	
4	8	
5	12	
6	6	
Total:	52	

1. Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 2 & -8 \\ -4 & 4 & 12\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}0 \\ 4 \\ -8\end{array}\right]$.
(a) (3 points) Find an echelon form (EF) of the augmented matrix $[A \mathbf{b}]$.

Solution: Start with the augmented matrix $[A \mathbf{b}]$ and row-reduce as follows:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 4 \\
-4 & 4 & 12 & -8
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 4 \\
0 & -4 & 16 & -8
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) (2 points) Find the reduced row echelon form (RREF) of the augmented matrix $[A \mathbf{b}]$.

Solution: Continue row-reducing from the echelon form of $[A \mathbf{b}]$ above:

$$
\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -7 & 4 \\
0 & 1 & -4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(c) (2 points) Find the parametric description of the solution set of the system $A \mathbf{x}=\mathbf{b}$.

Solution: The RREF found above has pivot columns 1 and 2 and x_{3} is free. Hence the parametric description of the solution set is

$$
\left\{\begin{array}{l}
x_{1}=4+7 x_{3} \\
x_{2}=2+4 x_{3} \\
x_{3} \text { is free. }
\end{array}\right.
$$

(d) (2 points) Do the columns of A span \mathbb{R}^{3} ? Justify your answer.

Solution: By a theorem in the book, the columns of A span \mathbb{R}^{3} if and only if there is a pivot in every row of the RREF of A. The RREF of A is $\left[\begin{array}{llc}1 & 0 & -7 \\ 0 & 1 & -4 \\ 0 & 0 & 0\end{array}\right]$, which does not have a pivot in every row, so the columns of A do not span \mathbb{R}^{3}.
(e) (1 point) Write down one solution to the linear system

$$
\begin{aligned}
x_{1}-2 x_{2}+\quad x_{3} & =0 \\
2 x_{2}-8 x_{3} & =4 \\
-4 x_{1}+4 x_{2}+12 x_{3} & =-8
\end{aligned}
$$

Solution: In part (c) we determined all the solutions to this system. We can obtain one by, for instance, setting $x_{3}=0$ and obtaining the solution $x_{1}=4, x_{2}=2, x_{3}=0$.
2. Let $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & -1 & -2 \\ -1 & -2 & -3\end{array}\right]$.
(a) (4 points) Find the inverse of A.

Solution:

$$
\left[\begin{array}{cccccc}
1 & 2 & 4 & 1 & 0 & 0 \\
0 & -1 & -2 & 0 & 1 & 0 \\
-1 & -2 & -3 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 2 & 4 & 1 & 0 & 0 \\
0 & -1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 2 & 0 \\
0 & -1 & -2 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \sim
$$

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 2 & 0 \\
0 & -1 & 0 & 2 & 1 & 2 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & -2 & -1 & -2 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Hence $A^{-1}=\left[\begin{array}{ccc}1 & 2 & 0 \\ -2 & -1 & -2 \\ 1 & 0 & 1\end{array}\right]$.
(b) (2 points) Determine the solution set of the system $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Solution: By a theorem in the book, the system has the unique solution

$$
\mathbf{x}=A^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 0 \\
-2 & -1 & -2 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Hence the solution set is $\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$.
(c) (2 points) Is there $\mathbf{a} \mathbf{b} \in \mathbb{R}^{3}$ such that the system $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions?

Solution: By a theorem in the book, if A is invertible then $A \mathbf{x}=\mathbf{b}$ has the unique solution $A^{-1} \mathbf{b}$, so the answer is no.
3. Let

$$
C=\left(\begin{array}{cccc}
1 & 2 & 1 & 21 \\
2 & 6 & 0 & 20 \\
0 & 0 & 0 & 3 \\
2 & 4 & 3 & 19
\end{array}\right)
$$

(a) (4 points) Compute the determinant of C.

Solution: Expanding along the second-to-last row yields:

$$
\operatorname{det}(C)=\left|\begin{array}{cccc}
1 & 2 & 1 & 21 \\
2 & 6 & 0 & 20 \\
0 & 0 & 0 & 3 \\
2 & 4 & 3 & 19
\end{array}\right|=-3\left|\begin{array}{ccc}
1 & 2 & 1 \\
2 & 6 & 0 \\
2 & 4 & 3
\end{array}\right|
$$

Row-reducing this 3×3 matrix, keeping track of scalar multiplications and row swaps, we obtain:

$$
-3\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 0 \\
2 & 4 & 3
\end{array}\right|=-3\left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 0 \\
0 & 0 & 1
\end{array}\right|=-3\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right|=-6
$$

where the last equality is because the determinant of an upper-triangular matrix is the product of its diagonal entries.
(b) (2 points) Compute the determinant of C^{-1}.

Solution: Using the multiplicativity of the determinant,

$$
1=\operatorname{det}(I)=\operatorname{det}\left(C C^{-1}\right)=\operatorname{det}(C) \operatorname{det}\left(C^{-1}\right)
$$

hence $\operatorname{det}\left(C^{-1}\right)=\frac{1}{\operatorname{det}(C)}$. Thus $\operatorname{det}\left(C^{-1}\right)=-\frac{1}{6}$.
(c) (2 points) Compute the determinant of the matrix $D=\left[\begin{array}{cccc}1 & 2 & 1 & 21 \\ 4 & 12 & 0 & 40 \\ 0 & 0 & 0 & 3 \\ 2 & 4 & 3 & 19\end{array}\right]$.

Solution: Since D is obtained from C by the row operation $R_{2} \rightarrow 2 R_{2}$, by the theorem that says how determinants change under row operations,

$$
\operatorname{det}(D)=2 \operatorname{det}(C)=2(-6)=-12
$$

4. For this question, no justification is required (justification is required on all other questions on this midterm). Circle your final answer clearly. For parts (c)-(h), determine whether the statement is true or false.
(a) (1 point) Write down a vector $\mathbf{v} \in \mathbb{R}^{2}$ such that the set $\left\{\mathbf{v},\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is linearly dependent.

Solution: $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

(b) (1 point) Let A be a 4×2 matrix. Suppose that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a solution to the system $A \mathbf{x}=\mathbf{0}$ and $\left[\begin{array}{l}2 \\ 4\end{array}\right]$ is a solution to the system $A \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]$. Write down a solution to the system $A \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]$ that is not equal to $\left[\begin{array}{l}2 \\ 4\end{array}\right]$.

Solution: Since a solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]$ exists, the solutions of this system are translates of solutions to the system $A \mathbf{x}=\mathbf{0}$. Hence \mathbf{v} is a solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right]$ if and only if $\mathbf{v}-\left[\begin{array}{l}2 \\ 4\end{array}\right]$ is a solution to $A \mathbf{x}=\mathbf{0}$. So $\left[\begin{array}{l}2 \\ 4\end{array}\right]+c\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a solution to this nonhomogeneous system for any $c \in \mathbb{R}$. One possibility is $\left[\begin{array}{l}3 \\ 5\end{array}\right]$.
(c) (1 point) True/False: Let A be a square matrix. If A^{2} is invertible, then A is invertible.

Solution: True. Since A^{2} is invertible, $\operatorname{det}\left(A^{2}\right) \neq 0$. Thus, $\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{2}\right) \neq 0 \Longrightarrow$ $\operatorname{det}(A) \neq 0$, hence A is invertible.
(d) (1 point) True/False: Let A be a square matrix. If A is invertible, then A^{2} is invertible.

Solution: True. Since A is invertible, $\operatorname{det}(A) \neq 0$. Thus, $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2} \neq 0$, hence A^{2} is invertible.
(e) (1 point) True/False: If the columns of a 4×7 matrix A span \mathbb{R}^{4}, then A has 7 pivots.

Solution: False. Since there is at most one pivot in each row, a 4×7 matrix cannot have more than 4 pivots.
(f) (1 point) True/False: If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}} \in \mathbb{R}^{3}$, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ is always linearly dependent.

Solution: True. Any set of n vectors in \mathbb{R}^{m} is linearly dependent if $n>m$.
(g) (1 point) True/False: Let A be a square $n \times n$ matrix. If the system $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions, then the system $A \mathbf{x}=\mathbf{b}$ has at least one solution for every $\mathbf{b} \in \mathbb{R}^{n}$.

Solution: False. If A is the zero matrix, then $A \mathbf{x}=\mathbf{0}$ has solution set \mathbb{R}^{n}, but $A \mathbf{x}=\mathbf{b}$ has no solutions for any $\mathbf{b} \neq \mathbf{0}$.
(h) (1 point) True/False: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ be a linear transformation. The set

$$
\left\{T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right), T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right), T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right\}
$$

is linearly dependent.
Solution: True. By linearity of $T, T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)+T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$, thus the set is linearly dependent.
5. TRUE/FALSE. Determine whether the following statements are true or false, and give justification.
(a) (3 points) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly dependent set then \mathbf{v}_{3} can be written as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.

Solution: FALSE. Counterexample: Take $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Then \mathbf{v}_{3} is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} but $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent since $2 \cdot \mathbf{v}_{1}-\mathbf{v}_{2}+0 \cdot \mathbf{v}_{3}=0$.
(b) (3 points) Let A be a 2×4 matrix. if the system $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions, then the system $A \mathbf{x}=\mathbf{b}$ has at least one solution for every $\mathbf{b} \in \mathbb{R}^{2}$.

Solution: FALSE. Counterexample: Let A be the zero matrix. Then $A \mathbf{x}=\mathbf{0}$ has solution set \mathbb{R}^{2}, but the system $A \mathbf{x}=\mathbf{b}$ has no solutions for any $\mathbf{b} \neq \mathbf{0}$.
(c) (3 points) Suppose A is a 3×4 matrix whose columns span \mathbb{R}^{3}. There exists a 4×3 matrix B such that $A B=I_{3}$.

Solution: TRUE. Since the columns of A span \mathbb{R}^{3}, there exist $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3} \in \mathbb{R}^{4}$ such that $A \mathbf{b}_{i}=\mathbf{e}_{i}$ for $i=1,2,3\left(\mathbf{e}_{i}\right.$ denotes the i th column of $\left.I_{3}\right)$. Letting $B=\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$, we obtain $A B=I_{3}$.
(d) (3 points) Let A, B be 3×3 matrices. Suppose that A is invertible and A and B have different RREFs. Then B is not invertible.

Solution: TRUE. By the Invertible Matrix Theorem, a matrix is invertible if and only if its RREF is the identity matrix. Hence A invertible \Longrightarrow the RREF of A is $I_{3} \Longrightarrow$ the RREF of B is not $I_{3} \Longrightarrow B$ is not invertible.
6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that:

$$
T\left(\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(a) (3 points) Prove that $T\left(\left[\begin{array}{l}6 \\ 4 \\ 7\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

Solution:

First we solve

$$
c_{1}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
7
\end{array}\right]
$$

We form the augmented matrix:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
1 & 0 & 1 & 4 \\
3 & 2 & 0 & 7
\end{array}\right] \longrightarrow \text { after row reduction } \longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

So $c_{1}=1, c_{2}=2, c_{3}=3$. Thus, $T\left(\left[\begin{array}{l}6 \\ 4 \\ 7\end{array}\right]\right)=T\left(1\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]+2\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]+3\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=$

> (since T is a linear function)
> $T\left(\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]\right)+2 T\left(\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]\right)+3 T\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+2\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+3\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1+0+0 \\ 0+2+0 \\ 0+0+3\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(b) (3 points) Is T onto? Justify your answer.

Solution: Yes. Note that $\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=c_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+c_{3}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Hence by the linearity of T,

$$
T\left(c_{1}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=c_{1} T\left(\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\right)+c_{2} T\left(\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right)+c_{3} T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] .
$$

Since this holds for any $c_{1}, c_{2}, c_{3} \in \mathbb{R}$, Range $(T)=\mathbb{R}^{3}$, hence T is onto.

