Homework Set 7

Math 201 - Winter 2015

Due Tuesday, March 3

Section 4.6

Problems 2, 6, 18, 24, 30.
Section 5.1
Problems 8, 14, 18, 26.

Section 5.2

Problems 8, 14, 18, 22.

Problem 7.1. Let A be an $m \times n$-matrix and B be an $n \times p$-matrix. Show that $\operatorname{rank}(A B) \leq$ $\operatorname{rank}(A)$.

Problem 7.2. Let B be an $m \times n$-matrix.
(a). Let A be an invertible $m \times m$-matrix. Prove that $\operatorname{rank}(A B)=\operatorname{rank}(B)$.
(b). Let C be an invertible $n \times n$-matrix. Prove that $\operatorname{rank}(B C)=\operatorname{rank}(B)$.

Problem 7.3. (a). Find a 3×3-matrix A whose only eigenvalue is 17 such that the dimension of the eigenspace corresponding to 17 is 3 .
(b). The same as (a) but for the dimension of the eigenspace equal to 2 .
(c). The same as (a) but for the dimension of the eigenspace equal to 1 .

