Homework Set 2

Math 201 - Winter 2015
Due Tuesday, January 20

Section 1.4

Problems 14, 16, 26, 32, 34.

Section 1.5

Problems 18, 24, 30, 38.

Section 1.7

Problems 12, 28, 36, 38.

Functions

Let X and Y be sets. A function $f: X \rightarrow Y$ is a map which assigns a unique element $f(x) \in Y$ to each element $x \in X$. The domain of f is the set X; the codomain of f is the set Y.
Let $A \subseteq X$. The image of A under f is the set

$$
f(A)=\{f(x) \mid x \in A\} .
$$

Let $B \subseteq Y$. The preimage of B under f is the set

$$
f^{-1}(B)=\{x \in X \mid f(x) \in B\}
$$

Problem 2.1. Decide whether or not each of the following is a function. Justify your answers.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}-2 x+1$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)= \begin{cases}x+1 & \text { if } x \geq 0, \\ x-1 & \text { if } x \leq 0 .\end{cases}$
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)= \begin{cases}x^{2}-2 x+1 & \text { if } x \geq 0, \\ -x^{3}+1 & \text { if } x \leq 0 .\end{cases}$

Problem 2.2. Decide whether the following statements are true or false. If true, prove it. If false, provide a counterexample which shows that the statement is false; i.e. give an explicit, concrete example of a function f for which the equality fails-don't forget to provide the domain and codomain in your example!
(a) $f\left(f^{-1}(B)\right) \subseteq B$ for every subset B of Y.
(b) $f^{-1}(f(A))=A$ for every subset A of X.
(c) $f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right)$ for all subsets A_{1}, A_{2} of X.
(d) $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$ for all subsets A_{1}, A_{2} of X.

