Math 201

Homework 1

Due: At the beginning of class on January 13

Book 1.1-1.3

1.1: 14, 16, 24, 26 1.2: 8, 12, 16, 20, 24, 26 1.3: 6, 22, 26, 32

Logic and Symbols

- (1) True or false (justify your answer):
 - (a) $\forall x \in \mathbb{R}$, we have $x^4 > 0$.
 - (b) $\exists y \in \mathbb{Z}$ such that $\forall x \in \mathbb{R}, y > x$.
 - (c) $\exists a, b \in \mathbb{R}$ such that $\{x \in \mathbb{R} \mid ax^2 = b\} = \emptyset$.
 - (d) If 1 > 2, then 2 > 3.
 - (e) If $x \in \mathbb{Q}$, then $\exists y \in \mathbb{Z}$ such that $xy \in \mathbb{Z}$.
 - (f) x < 0 if and only if $x^3 < 0$.
 - (g) $\{x \in \mathbb{R} \mid x > 0\} = \{x \in \mathbb{R} \mid x^2 > 0\}.$
- (2) Write the following statements using symbols and quantifiers:
 - (a) There exists an integer such that if you multiply it by any real number, you get zero.
 - (b) For every real number, there exists an integer that you can multiply it with to get an integer.
- (3) Write the negation of each of the following statements.
 - (a) Every problem has a solution.
 - (b) The set S contains at least two integers.
 - (c) She likes dogs or dislikes cats.
 - (d) If you study hard, then you will do well in this class.
 - (e) Chickens have feathers if and only if 2 is not an integer.

Converse and Contrapositive. There are two additional logical statements that can be formed from a given "if-then" statement:

• The converse of the statement $P \Rightarrow Q$ is the statement $Q \Rightarrow P$. The converse may be true or false, independent of the truth value of the original "if-then" statement. Why? Compare the truth tables for both statements:

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
T	Т	T	T
T	F	F	T
F	Т	T	F
F	F	T	T

The last two columns do not coincide.

• The contrapositive of the statement $P \Rightarrow Q$ is the statement not $Q \Rightarrow not P$. The original "if-then" statement and its contrapositive have the same truth value. Why? Compare the truth tables for both statements:

P	Q	$P \Rightarrow Q$	$not \ Q$	not P	$not \ Q \Rightarrow not \ P$
Τ	T	T	F	F	T
Τ	F	F	T	F	F
F	Т	Т	F	Т	Т
F	F	T	T	T	T

The columns corresponding to $P \Rightarrow Q$ and not $Q \Rightarrow not P$ coincide.

- (4) Write the converse and the contrapositive of each of the following statements:
 - (a) If 1 = 2, then *Modern Family* is the best sitcom on television.
 - (b) If x > 0, then $x^2 < 0$ or $x^3 > 0$.
- (5) (a) Give an example of an "if-then" statement that has a truth value different from the truth value of its converse.
 - (b) Give an example of an "if-then" statement that has the same truth value as its converse.

Set Theory

- (6) (a) Use set-theoretic notation to define the half-open interval (a, b] in the real numbers.
 - (b) Write a common English description for the following set:

 $\{x \in \mathbb{Z} \mid \exists y \in \mathbb{Z} \text{ such that } x = 2y - 1\}.$

(c) List all of the subsets of $S = \{\{1, 2\}, 3, 4\}.$

- (7) Let $X = \{x \in \mathbb{R} \mid \frac{1}{2} \le x < 5\}$, let $Y = \{x \in \mathbb{R} \mid x = 2y + 1 \text{ for some } y \in \mathbb{Z}\}$, and let $Z = \{x \in \mathbb{R} \mid x^2 > 0\}$. Explicitly compute the following:
 - (a) $X \cup Z$
 - (b) $X \cap Y$
 - (c) $X \setminus Y$
 - (d) $Y \setminus Z$