Problem Set 9

Due: Friday, March 23

Problem 1. Let f^{λ} be the number of SYT of shape λ . Find (and prove) a simple formula for the generating functions $\sum_{n\geq 0} a_n \frac{x^n}{n!}$ and $\sum_{n\geq 0} b_n \frac{x^n}{n!}$, where

$$a_n = \sum_{\lambda \vdash n} (f^{\lambda})^2,$$
$$b_n = \sum_{\lambda \vdash n} f^{\lambda}.$$

- **Problem 2.** Prove that the set $\{r_l(p_{\lambda}) : \ell(\lambda') \leq l\}$ is a basis for Λ_l , the ring of symmetric functions in the variables x_1, x_2, \ldots, x_l .
- **Problem 3.** Express $r_2(h_n)$ in terms of the basis $\{r_2(h_\lambda) : \ell(\lambda') \leq 2\}$ of Λ_2 .
- **Problem 4.** An increasing subsequence of a permutation $\pi_1 \pi_2 \cdots \pi_n \in S_n$ is a subsequence $\pi_{i_1} \pi_{i_2} \cdots \pi_{i_j}$ such that $\pi_{i_1} < \pi_{i_2} < \cdots < \pi_{i_j}$. For instance, 2367 is an increasing subsequence of the permutation 52386417. Show that for any $\pi \in S_n$, $\operatorname{sh}(P(\pi))_1$ is the length of the longest increasing subsequence of π , where $\operatorname{sh}(P(\pi))$ is the shape of the insertion tableau of π .
- **Problem 5.** Fix a partition μ of n-1. Find (with proof) a simple formula for $\sum_{\lambda} f^{\lambda}$ in terms of f^{μ} , where the sum is over all partitions of n obtained by adding a square to the diagram of μ .