Problem Set 9

Due: Friday, March 23

Problem 1. Let f^{λ} be the number of SYT of shape λ. Find (and prove) a simple formula for the generating functions $\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$ and $\sum_{n \geq 0} b_{n} \frac{x^{n}}{n!}$, where

$$
\begin{gathered}
a_{n}=\sum_{\lambda \vdash n}\left(f^{\lambda}\right)^{2}, \\
b_{n}=\sum_{\lambda \vdash n} f^{\lambda} .
\end{gathered}
$$

Problem 2. Prove that the set $\left\{r_{l}\left(p_{\lambda}\right): \ell\left(\lambda^{\prime}\right) \leq l\right\}$ is a basis for Λ_{l}, the ring of symmetric functions in the variables $x_{1}, x_{2}, \ldots, x_{l}$.

Problem 3. Express $r_{2}\left(h_{n}\right)$ in terms of the basis $\left\{r_{2}\left(h_{\lambda}\right): \ell\left(\lambda^{\prime}\right) \leq 2\right\}$ of Λ_{2}.
Problem 4. An increasing subsequence of a permutation $\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathcal{S}_{n}$ is a subsequence $\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{j}}$ such that $\pi_{i_{1}}<\pi_{i_{2}}<\cdots<\pi_{i_{j}}$. For instance, 2367 is an increasing subsequence of the permutation 52386417. Show that for any $\pi \in \mathcal{S}_{n}, \operatorname{sh}(P(\pi))_{1}$ is the length of the longest increasing subsequence of π, where $\operatorname{sh}(P(\pi))$ is the shape of the insertion tableau of π.

Problem 5. Fix a partition μ of $n-1$. Find (with proof) a simple formula for $\sum_{\lambda} f^{\lambda}$ in terms of f^{μ}, where the sum is over all partitions of n obtained by adding a square to the diagram of μ.

