Problem Set 8

Due: Friday, March 16

Problem 1. Write out a careful proof in your own words of the proposition stated in class:

$$
\prod_{i, j}\left(1+x_{i} y_{j}\right)=\exp \left(\sum_{n \geq 1} \frac{1}{n}(-1)^{n-1} p_{n}(\mathbf{x}) p_{n}(\mathbf{y})\right)=\sum_{\lambda} z_{\lambda}^{-1} \varepsilon_{\lambda} p_{\lambda}(\mathbf{x}) p_{\lambda}(\mathbf{y})
$$

Problem 2. Determine (with proof) the number of standard Young tableaux of size n and at most 2 rows. For example, for $n=4$, there are 6 such SYT.

Problem 3. Express h_{n} in terms of the basis $\left\{e_{\lambda}: \lambda \vdash n\right\}$ of $\Lambda_{\mathbb{Q}}^{n}$. Express e_{n} in terms of the basis $\left\{h_{\lambda}: \lambda \vdash n\right\}$ of $\Lambda_{\mathbb{Q}}^{n}$.
Problem 4. Prove that

$$
h_{k}\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)=\sum_{j=1}^{n} x_{j}^{n-1+k} \prod_{i \in[n], i \neq j}\left(x_{j}-x_{i}\right)^{-1}
$$

Problem 5. Prove that if $\lambda, \mu \vdash n$ and $\mu \leq \lambda$ (dominance order), then $K_{\lambda \mu} \neq 0$.

